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Summary—The purpose of this paper is to compare a certain number of well known models used in the 
fields of Mechanical Translation (M.T.) and Information Retrieval (I.R.). Different surveys of this type 
exist (Bar-Hillel [1], Hays [2], Lecerf [3], Sestier and Dupuis [4]), where models have been compared from the 
point of view of practical and linguistic adequacy. We wish here to compare certain formal characteristics of 
these models, in fact to show that they are strictly equivalent to a well studied model. The notion of equiva- 
lence will be defined formally, the model to which the other models are equivalent is Chomsky's model of 
context-free languages (c.f. languages). 

The equivalences discussed here have not only an abstract character; several practical problems which 
arise naturally are clarified. 

1 

THE majority of MT and IR projects have been primarily concerned with the construction 
of grammars and computer programs aiming to produce syntactic analyses for the sentences 
of a given natural language. 

In certain cases, the grammar and the recognition routine are completely amalgamated 
into a single program and the grammatical information is no longer available for a pro- 
gram that would synthesize sentences. The interest of synthesizing sentences has been shown, 
synthesis by the output of a transfer grammar, Yngve [5], or synthesis at random, Yngve [6]. 
This sort of grammar cannot pretend to hold for models of languages, unless one admits 
that human beings use alternatively two disjoint devices; one for reading, the other for 
writing; and probably two others, one for hearing, the other for speaking. One would have 
to construct four types of corresponding devices for each language in order to translate and 
to retrieve information automatically. 

Rather frequent are the cases where the grammar is neutral between the programs of 
analysis and synthesis; these grammars following Chomsky [7] [8], we will call generative 
grammars. 

We shall now make more precise the concepts of grammar and language, and examine 
the requirements a grammar has to meet [9]. 

We consider the finite set V = [ai | 0  i   D] V is called vocabulary, the ai's are words, 
a0 is the null word. On V the operation of concatenation defines the set C(V) of strings on 
V, any finite sequence of words T = ai1 ai2 . .. aik with 0  i1 i2 . .. ik  D is a string on 
V, C(V) is a free monoid whose generators are the ai's. 

* Presented at the NATO Advanced Study Institute on Automatic Translation of Languages, Venice, 
15-31 July 1962. 

† Presently at the “Institut Blaise Pascal—C.N.R.S”. Paris, France. 
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(1) A subset L of C(V) is called a language on V : L  C(V). 
(2) A string S, such that S  L, is a sentence of the language L. 
(3) A finite set of finite rules which characterize all and only the sentences of L, is called 

a grammar of L. (Productions of a combinatorial system: Davis [32].) 
(4) Two grammars are equivalent if they characterize the same language L. 

This abstract and most general model is justified empirically as follows: 
The words (or morphemes) of a natural language L form a finite set, i.e. the vocabulary 

or lexicon V of the language L. 
Certain strings on V are clearly understood by speakers of L as sentences of L, others are 

clearly recognized as nonsentences, so L is a proper subset of C(V). 
Many facts show that natural languages have to be considered as infinite. The linguistic 

operation of conjunction can be repeated indefinitely, the same thing for the embedding of 
relative clauses as in the sentence: {the rat [the cat (the dog chased) killed]ate the malt]. Many 
other devices of nesting and embedding exist in all natural languages and there is no lin- 
guistic motivation which would allow a limit on the number of possible recursions. 

We wish to construct a grammar for a natural language L, that considered abstractly 
enumerates (generates) the sentences of the language L, and associated with a recognition 
routine it recognizes effectively the sentences of L. 

The device so far described is a normative device which simply tells whether or not a 
string on V is a sentence of L; equivalently, it is the characteristic function of L. This mini- 
mum requirement of separating sentences from non sentences is a main step in our con- 
struction. The construction of this normative grammar requires the use of the total gram- 
matical information inherent in L, and under these conditions it should be natural to use 
this same information in order to give as a by-product a description of the organization of a 
sentence S1 in L. This can be done simply by keeping track of the grammar rules that have 
been involved in the analysis of S1. This particular ordered set of rules is called the deriva- 
tion of S1. This by-product is of primary importance; it is a model for the understanding of 
L by its speakers (Chomsky [9], Tesnière [10]); parallelly any MT or IR realization requires 
the machine to have a deep understanding of the texts to be processed. Furthermore a 
normative device would not tell whether a sentence is ambiguous or not; the only way to 
describe the different interpretations assigned to an ambiguous sentence is to give them 
different descriptions. 

The basic requirements for a formalized description of natural languages, almost 
trivial in the sense that they make practically no restrictions on the forms of grammars and 
languages, do not seem to have been widely recognized in the fields of MT and IR, never- 
theless they are always unconsciously accepted. 

Chomsky [11, 8, 12] has studied a large variety of linguistic and formal constraints 
that one can reasonably put on the structure of grammars. The grammars so constrained 
range from finite-state grammars to the device described above, which can be viewed as 
arbitrary Turing Machine. 

These grammars in general meet a supplementary requirement; each derivation of a 
sentence has to provide a particular type of structural description which takes the form of 
simple trees or, equivalently of parenthesized expressions; both subtrees and parentheses 
are labelled, i.e. carry grammatical information. Certain types of grammar have been 
proved inadequate because of their inability to provide a structural description for the 
sentences they characterize (type 1 grammars in Chomsky [8]). 
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Many authors in the field of MT and IR start from the postulates: 

(1) A grammar is to be put, together with a recognition routine, into the memory of an 
electronic digital computer. 

(2) The result of the analysis of a sentence is to be given in the form of a structural 
description. 

In order to minimize computing time and memory space, further constraints were 
devised aiming to obtain efficient recognition routines. In general these constraints were 
put on the structural description and much more attention has been paid to giving a rigorous 
definition of the structural description than to the definition of a grammar rule. Discussions 
of this topic can be found in Hays [2], Lecerf [3] and Plath [13]. The nature of grammatical 
rules is never emphasized and often the structure of the rules is not even mentioned. Never- 
theless the logical priority order of the operations is the following: 

—the recognition routine traces a derivation of a sentence S according to the grammar. 
—the derivation of S provides a structural description of S. The structural descriptions 

generally have a simple form, that of a tree terminating in the linear sequence of the words 
of S. These trees (or associated parenthesized expressions) are unlabelled in [2], [3] and [13]. 
Yngve uses a complex tree with labelled nodes corresponding to well-defined rules of gram- 
mar. Other structures than trees could be used [10] in order to increase the amount of in- 
formation displayed in the structural description. The question of how much information is 
necessary in the structural description of a given sentence in order to process it automatically 
(translation or storage and matching of information), has never been studied. Many authors 
look for a minimization of this information, which is quite unreasonable given the present 
status of the art; our guess is that the total amount of information available in any formalized 
system for a sentence S will never be sufficient for a completely mechanized processing of S 
and that these minimal structural descriptions will have to be considerably enriched. In 
Section 6 we will show that for many sentences one tree is not sufficient to describe relations 
between words. 

Among the simple models which have been or are still used, we will quote: 
Immediate constituent analysis models as developed in [7], [14], [15] and [16] where two 

substrings B and C of a sentence S can form a larger unit A of S only if they are contiguous 
(A = BC). 

Categorical grammars developed by Bar-Hillel where categories of substrings are de- 
fined by means of the basic categories (Noun, Sentence) and of the immediate left or right 
environment. 

Predictive Analysis models ([17], [18], [19]) where the grammars are built such that the 
recognition routine can use a pushdown storage, which is a convenient programming tool. 

Dependency and projective grammars developed respectively by Hays [20] and Lecerf 
[3], which lead to the simple analysis programs their authors have described. 

2 
CHOMSKY'S  CONTEXT-FREE LANGUAGES* 

The grammars of the most general type we have described in the previous section can 
be viewed as arbitrary  Turing Machines or equivalently [32] as combinatorial systems 

* In the section we shall follow closely Chomsky [12] where a complete survey of these languages and 
their bibliography can be found. 
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(Semi-Thue Systems) where the sentences are derived from an axiom S by the means of a 
finite set of rewriting rules (productions): . 

The sentences are defined on the terminal vocabulary VT as in Section 1. The strings 
,  are defined on a vocabulary V = VNUVT, where VN is the non-terminal vocabulary 
which includes an initial symbol S meaning sentence. 

The arrow between  and  is to be interpreted as ‘is rewritten’. 
A context-free grammar is a finite set of rewriting rules i  i where i and i are 

strings on V such that: 

i is a single element of VN 
at least one i  is S 
i is a finite string on V. 

The language generated by a context-free grammar is called a context-free language. 

Example 

Grammar: S  aSb 
 S  c 

This grammar can generate (recognize) all and only the sentences of the type 

 
noted a" c b", for any n. 

The sentence aaa c bbb is obtained by the following steps: 

S           aSb 
aSb          aaSbb   these four lines represent the derivation of the sentence. 

aaSbb       aaaSbbb 
aaaSbbb   aaa c bbb 

The associated structural description is the following: 

 

The context-free grammars can be associated with restricted Turing Machines such as 
restricted infinite automata or equivalently, pushdown storage automata. 

We give an informal description of the pushdown storage automaton (PDS automaton). 
For a more precise description see Chomsky [12]. 

The PDS automaton is composed of a control unit which has a finite set of possible 
internal configurations or states {Sj} including an initial state S0. The control unit is equipped 
with a reading head which scans the symbols ai of a finite string written on successive squares 
of an input tape which is potentially infinite and can move, let us say, only from right to 
left. 

{ai| l  i  p} is the set of symbols; VI = eU{ai} is the input vocabulary which includes 
a null element e; the input strings are defined on VI . 
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The control unit is equipped with a second head which allows it to read and write on a 
storage tape which can move in either direction and is also potentially infinite. It writes on 
successive squares of the storage tape strings on a vocabulary: eU{Ak|1  k  q} which can 
include VI. The storage tape vocabulary is V0 = eU{Ak}U, where e is the null element, 
and  a special symbol which is never printed out. 

The squares on which the strings are written are occupied simultaneously by both ai 
(or Ak or ) and e; either infinite side of the string can be thought of as filled with the 
blank symbol #. 

A situation  of the PDS automaton is a triplet  = (ai , Sj , Ak); if the PDS is in the 
situation  it is also in the situations where the elements ai or Ak or both are replaced by e. 
There is an initial situation (ai , S0 , ) where the input head is positioned on the leftmost 
square of the input string, and the storage head on the symbol . 

A computation starts in an initial situation and is directed by a finite number of in- 
structions I, (Sr, x); when the automaton returns to the initial situation the first time, 
x = . 

From the situation , where the automaton is in state Sj, the automaton switches into 
the state Sr and moves its input tape one square left if the first element of  is an ai , other- 
wise (for e) the tape is not moved. 

If x is a string on {Ak}, it is printed on successive squares to the right of the square 
scanned on the storage tape, and the latter is moved  (x) (length of x) squares to the left. 

If x =  the storage tape is moved one square right, nothing is printed and the square 
Ak previously scanned is replaced by the blank symbol #. 

If x = e the storage tape undergoes no modification. After an instruction I has been 
carried out, the automaton is in the new situation ' whose first element is the symbol of 
the input string now being scanned, the second element is Sr, the third element can be 
either the same Ak if x = e or Am if x = Am, or if x = , the rightmost symbol of Ak 

written on the storage tape. If in this new situation ' a new instruction I' can be applied 
(i.e. there is an I' whose left member is '), the computation goes on, otherwise it is ‘blocked’. 

An input string is accepted by a PDS automaton if starting in an initial situation, it 
computes until on its first return to S0 it is in the situation (#, S0, #) the storage tape is 
blank, and the first blank is the one at the right of the input string (the latter has been 
completely scanned). 

A set of strings on VI accepted by a PDS automaton will be called a push-down language. 
We can define context-free grammars and pushdown automata on the same universal 

alphabet VU ; we then have the following theorem by Chomsky [12] and Schützenberger 
[33]. 

Theorem 1 

The pushdown languages are exactly the context-free languages. 

3 
EQUIVALENCES OF LANGUAGES 

(1) The equivalence of context-free languages and immediate constituent languages 
has been proven by Chomsky [8]. He proved that for any context-free grammar there exists 
a grammar whose rules are all of the form A  BC or A  a where the capital letters (mem- 
bers of the nonterminal vocabulary) represent structures and the a's morphemes. 

Sakai’s  model  is  exactly  the  immediate  constituent model. His grammar has rules of the 
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form BC = A, his recognition routine builds, for a given sentence, all binary trees compatible 
with the grammar. 

(2) The equivalence of Bar-Hillel’s categorical grammars and context-free grammars 
is proved in [22]. 

(3) Theorem 1 proves the equivalence of the predictive analysis and the context-free 
analysis. The recognition routine described in Kuno and Oettinger can be schematized by 
PDS automaton of Section 2 in the following way: {ai} is identified with the set of syn- 
tactic word classes {sj} given by a dictionary; {Ak} is identified with the set of predictions 
P = {Pi}. The symbol S, meaning sentence and  meaning period (end of sentence) are 
Pi’s. The set I of instructions contains: 

                                              I1 : (e, S0, a)     (S1, e) 
I2 : (e, S1,e)      (S2, S) 
I3 : (sj, S2, Pk)   (SPk,) 
I4 : (e, SPk, e)     (S2, x) 
IF : (sj, S2, )     (S0,) 

The set of the states is {S0 , S1 , S2, [SPk |Pk  P]}. 
The device computes as follows: 
I1 and I2 are initialization instructions; I2 places on the storage tape the prediction S 

(sentence). 
To I3, I4 corresponds the use of the grammar rules; Pk is the rightmost prediction on 

the storage tape; sj is the syntactic class of the scanned word on the input tape. If sj and Pk 

are compatible then by an I3 the automaton switches into the state SPk and erases Pk; then 
by an I4 it switches back into the state S2 and prints a string x of predictions which is a 
function of Pk and sj (x may be null). 

IF ends the computation, it comes after an I3 where sj was compatible with the ‘bottom’ 
prediction  (period);  was erased, then IF applied and leaves the automaton in the situa- 
tion (#, S0, #), where the storage tape is blank and the string accepted. 

In a situation (e, SPk, e) following a situation (sj, S2, Pk) there may be different possible 
strings x corresponding to a single pair (sj, Pk); the automaton, which is non-deterministic 
in this case, will choose one at random; if its choices are right all along the computation, the 
input string will be accepted, if not the computation will block. These conventions do not 
affect the class of languages accepted by the automaton. Intuitively, an acceptable string 
may be rejected several times because of a wrong guess, but there exists a series of right 
guesses that will make the automaton accept this string. 

The actual device gives as an output a syntactic role rn for each sj, where rn provides a 
structural description; this does not affect the class of languages accepted by the PDS 
automaton. 

The automaton described above is precisely one which was previously used for pre- 
dictive analysis, where only one (so-called ‘most probable’) solution (acceptance) was looked 
for [23]. The new scheme [17] gives all possible solutions for an input sentence. It can be 
considered as a monitoring program which provides inputs for the PDS automaton de- 
scribed above and enumerates all possible computations the automaton has to do for every 
input string. If a sentence contains homographs then the corresponding input strings are 
enumerated and fed successively into the automaton; the latter instead of making a guess 
when in a non-deterministic situation, tries all of them;  they  are  kept  track  of  by the moni- 
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toring program; when a computation blocks, the storage tape (subpool) is discarded and a 
new computation is proposed to the automaton. 

4 
DEPENDENCY LANGUAGES 

We will turn to the dependency grammars as defined in Hays [20]. The linguistic con- 
ception originated by Tesnière differs from that of Immediate Constituent Analysis; 
here the morphemes are connected in terms of the intuitive notions of governor and depen- 
dent: 

Example 

 

The two basic principles which determine the shape of the dependency model are 
quoted as follows: ([20] pp. 3, 4). 

(1) Isolation of word order rules from agreement rules. 
(2) Two occurrences (words) can be connected only if every intervening occurrence 

depends, directly or indirectly, on one or the other of them. 
(1) Corresponds to the fact that recognition routine and grammar are separated. 
(2) Defines both grammar and language. The grammar consists of a set of binary 

relations between a governor and a dependent. Two occurrences can be connected only if a 
certain contiguity holds: IN and GARDEN are connected only if the (direct) dependency 
GARDEN-THE holds; FLOWERS and ARE can be connected only if the indirect de- 
pendency IN-THE and the direct one FLOWERS-IN, hold. 

Theorem 

The dependency languages are exactly the context-free languages. 
This theorem has been proven by Gaifman and independently by the author. Gaifman 

[34] has obtained a stronger result showing that the set of the dependency trees is a proper 
subset of the set of the context-free trees. 

We give below the part of our proof which yields the following result; the dependency 
languages are context-free languages. 

We now construct a PDS automaton of the type of Section 2 which accepts the depen- 
dency languages. Like the previous machine, it will not give a structural description of the 
analysed string but the restriction that the device be normative has no effect on the class of 
accepted strings. 

Let V = {ai} i  0 be the vocabulary of the language. We will take as the input vocabu- 
lary of the automaton VI = VUe. 
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Let V0 = eU{Ak}U, k  0 be the output vocabulary where the Ak’s are syntactic 
classes. 

The set {I} of instructions contains 

                                                 I1 :  (e, s0, )      (SD, e) 
I2 : (ai, SD, e)    (SD, Ai) 
I3 : (e, Sj, Aj)   (Sj,) 
I4  : (e,Sj,Ak)   (Sj,) 
I5 :  (e, Sj Ak)   (Sk, ) 
I6 : (e, Sj, e)      (SD, Aj) 
I7 : (e, Ss, )     (S0 ,r) 

The main operation of the computation is to connect a dependent to its governor; when 
this is done the dependent is erased from the storage. 
     I1 initializes the computation. 

I2 is a dictionary look-up instruction; Ai a syntactic class of ai is printed on the storage 
tape. 

I3 guesses that there is a connection to be made with the Ai immediately to the left of the 
scanned Aj , Aj is erased but remembered since the automaton switches into a corresponding 
state Sj. 

I4 and I5 compare the syntactic classes Aj and Ak: the automaton switches into either 
the state Sj or Sk corresponding to the fact that either Aj or Ak is governor. For a given pair 
(Aj, Ak) there is generally either an I4 or an I5 according as Aj or Ak is governor (in case the 
agreement is unambiguous). If they cannot be connected at all, the machine stops and the 
string is not accepted. If the next accessible Ar on the storage tape is to be connected with 
Aj or Ak then an instruction: (e, Sj, Ar)  (S, ) or (e, Sk, Ar )  (S, ) can be applied 
(either of these instructions can be an I4 or an I5). If the next accessible Ar is not to be con- 
nected with Aj or Ak then instructions I6 and I2 are applied. Before the automaton uses an 
instruction I5 where it forgets Aj it has to make the guess that no dependent on Aj will come 
next from the input tape. 

I6; the automaton transfers Aj from its internal memory to the storage tape, it switches 
into state SD where it will use an instruction I2. 

I7 is a type of final instruction; from the state Ss where the automaton remembers the 
topmost governor As, it switches into the state S0 after the direct dependents of As have been 
connected (i.e. erased); the situation following I7 will be (#, S0, #). 

This non-deterministic automaton is equivalent to a recognition routine that would 
look for one 'most probable' solution. As in the case of the predictive analysis discussed 
above a monitoring program that would enumerate all possible computations would pro- 
vide all possible solutions.* 

Remarks 
The instructions I3 and I4 (or I5 for a governor Aj (or Ak)) remember this governor in the 

form Sj (or Sk). If this governor were modified by the agreement then it could be rewritten 
Sm with m  j (or m  k). This would not change the structure of the automaton, nor 
would it modify the class of accepted languages. 

* The author has written in COMIT a recognition routine of this type. The automaton above is a sche- 
matization of a part of the program which gave, after one scan from left to right, all the solutions compatible 
with the grammar. 
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It might be convenient for the diagramming of a sentence to think of null occurrences 
having a syntactic class; then their position could be restricted (between consecutive AjAk, 
for example) and in this case too a modification of the automaton shows that the class of 
accepted languages is the same. 

In the case of I5 we have the following indeterminacy about the guess the automaton has 
to make; if the guess is wrong, namely the next coming Ar can be connected to Ak; two cases 
are possible: (1) Ar can be connected to Aj the governor of Ak, then the computation may 
still follow a path which will lead to an acceptance (in this case the sentence was ambiguous), 
(2) Ar cannot be connected to Aj. The string will not be accepted since the content of the 
storage tape will never become blank. 

The cases of conjunction, double conjunction and subordinate conjunctions in the 
‘secondary structure’ require the automaton to have states where it remembers two syntactic 
types. For example, in the string acb a conjunction c depends on governor b on its right, 
and the item a equivalent to b and preceding c is marked dependent on c. We will have the 
following instructions: 

                                                                      (C0) (a,SD,e)    (SD Aa) 
                                                         (C1) (c,SD,e)   (Sc,e) 
                                                                          (C2) (e, Sc, Aa) (Sa

c, ) 
                                                                       (C3) (b,Sa

c,e)   (Sa
c, Ab) 

                                                                      (C4) (e, Sa
c, Ab) (SD, e) 

(C1) remembers the conjunction c read after Aa 
(C2) erases Aa from the storage but remembers it 
(C3) reads and looks up b 
(C4) connects Aa, c, Ab and forgets the dependents Aa and c. 

Relationship grammars 
Four classes of grammars, all based on the concept of dependency, are defined by 

Fitialov. 
The author remarks that the languages described by these grammars are all phrase- 

structure languages in the sense of Chomsky [8]. According to Chomsky [8], [12] phrase- 
structure grammars include at least context-free and context-sensitive grammars. In his 
paper Fitialov mentions the use of contexts, and it is not clear which type of phrase structure 
grammars are Fitialov’s grammars. 

The construction of a P.D.S. automaton very similar to the one above, which is perfectly 
straightforward, shows that Fitialov’s languages are context-free. They are probably power- 
ful enough to describe the whole class of context-free languages, which remains to be proved. 

Projective Languages 
Lecerf [24] works on the principle that the dependency representation of a sentence S1 

and the immediate constituent analysis of the same sentence S1 are both of interest since 
they show two different aspects of linguistics [3]. 

This mathematical theory deals with infinite lexicons and doubly structured strings are 
defined. We will impose the restriction of finiteness on the lexicon. 



132 M. GROSS 

The recursive definition of the (G-structures is the following: 

Let M = {mi}, a lexicon where the mi’s are words: 
A syntagma is represented by [Sk]; the mi’s are Sk’s; S is the set of all possible syntagma 
S = {[Sk]}. 
There is an operator represented by ([Sk]) corresponding to each syntagma which can be 
applied to the right or the left of any syntagma in order to construct a new one. 
Right operation [Sj]. ([Sk]) is noted 

([Sj] . ([Sk])]  S. 
Left operation ([Sk]) . [Sj] is noted 

[([Sk]) . [Sj]]  S. 

Example 
[([([the]) . [man]]) . [[hit] . ([([the]) . [ball]])]] 

Lecerf proved that the operation of erasing the parentheses provides the tree of the 
immediate constituent analysis where the dots are the nonterminal nodes. On the other 
hand, the operation which consists of erasing the brackets and dots provides the tree of the 
dependency analysis. 

We will point out some properties of this model. The language defined by right or left 
adjunction of an operator to a syntagma is obtained when we erase the structure markers 
(parentheses, brackets, dots). These adjunctions then reduce to the simple operation of 
concatenation. The language defined is the set of all possible combinations of words. It is 
the monoid C(M). 

Clearly what is missing is a set of rules which would tell which syntagma and which 
operators can be combined, but this problem is not raised. 

If, following the author, we admit that his model characterizes both the dependency 
languages and the immediate constituent languages, we have two good reasons to think of 
the ‘G-structures’ as being context-free, but no evidence at all. In this case the ‘G-structures’ 
would be redundant since Gaifman gave an algorithm which converts every dependency 
grammar into a particular context-free grammar. 

Yngve’s model 
The grammar described in Yngve [6] consists of the following types of rules defined as a 

vocabulary V = VNUVT 
(1) A  a 
(2) A  BC 
(3) A  B ... C where any single element of V can occur between B and C in rule (3). 
The restriction of the depth hypothesis makes the language a finite state language [6]. 

Without depth, rules of type (1) and (2) show that the language is at least context-free. 
Matthews [25] studied a special class of grammars; grammars containing rules of types 

(1), (2), (3) are shown to be a subclass of Matthews’ ‘one-way discontinuous grammars’, 
which in turn are shown to generate context-free languages. 

The structural description provided by these rules are not simple trees and cannot be 
compared to the other structures so far described. 
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5 
APPLICATIONS OF THE GENERAL THEORY OF C.F.  GRAMMAR 

     The context-free grammars, have found applications in the field of programming lan- 
guages. We extend here remarks already made by Chomsky [9] and Ginsburg and Rose [26] 
to the case of natural languages. The two theorems mentioned below derive from the results 
obtained by Bar-Hillel et al. [27]. 

Ambiguity 

An empirical requirement for a grammar is that of giving n structural descriptions for an 
n-ways ambiguous sentence. A grammar of English will have to give, for example, two 
analyses of the sort given below, for the sentence: (A) They are flying planes 

 
When constructing a c-f grammar for natural languages the number of rules soon 

becomes very large and one is no longer able to master the interrelations of the rules: 
rules corresponding to the analysis of new types of sentences are added without seeing 
exactly what are the repercussions on the analysis of the former ones. We use here an 
example mentioned in [17]. The grammar used at the Harvard Computation Laboratory 
contains the grammatical data necessary to analyse the sentence (A) in two different man- 
ners. Independently it contains the data necessary to analyse the sentence (B) in the manner 
shown below: 
(B) The facts are smoking kills 

 

The dictionary shows that TO PLANE is also a verb and KILL also a noun. 
The result of the analysis of sentences (A) and (B) is three solutions for each of them 

(the three trees described above: T1 , T2, T3). 
Any native speaker of English will say that (A) is twice ambiguous and (B) is not ambigu- 

ous at all; the wrong remaining analyses are obtained because of the grammar in which 
rules have to be made more precise. 

Obviously T3 has to be suppressed for (A) and T1 and T2 for (B). This situation arises 
very  frequently  and  one may raise the more general question or systematically detecting 
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ambiguities in order to suppress the undesirable ones. A result of the general theory of c.f. 
grammars is the following. 

Theorem. The general problem* of determining whether or not a c.f. grammar is ambigu- 
ous is recursively unsolvable, [21]. 

The meaning of the result is the following: there is no general procedure which, given a 
c.f. grammar, would tell, after a systematic inspection of the rules, whether the grammar is 
ambiguous or not. Therefore the stronger question of asking what rules produce ambiguous 
sentences is recursively unsolvable as well. We can expect that the problem of checking an 
actual grammar by other means than analysing samples and verifying the structural de- 
scriptions one by one is extremely difficult. 

Translation 

A scheme widely adopted in the field of M.T. [5] consists of having two independent 
grammars G1 , G2 for two languages Ll , L2 and a transfer grammar T going from L1 to L2 

(or from L2 to L1). A result of the theory of c.f. grammars is the following: 

Theorem. Given two c.f. languages L1 and L2, the problem of deciding whether or not 
there exists a mapping T such that T(L1) = L2 is recursively unsolvable [26]. 

Of course a translation from L1 to L2 need not be an exact mapping between L1 and L2, 
but there may be a large sublanguage of L2 which is not in the range of any particular 
grammar T constructed empirically from L1 and L2; conversely some sublanguage of L1 

may not be translatable into L2 ; in any case, one should expect that the problem of con- 
structing a practically adequate T for L1 and L2 is extremely difficult. 

These results derived from the general theory show the interest of this theory. The results 
so far obtained mostly concern the languages themselves; very little is known about the 
structural descriptions. Studies in this field could provide decisions when a choice comes 
between different formal systems: for example, this theory could decide which one of the 
systems described above is more economical according to the number of syntactic classes, 
or to the number of operations necessary to analyse a sentence. Such questions, if they may 
be answered, require further and difficult theoretical studies on these systems. 

6 
ADEQUACY OF CONTEXT-FREE MODELS 

Many natural languages present to a certain extent, the features of context-free languages. 
An example of strings which are not context-free has been given by Bar-Hillel and Solo- 
monoff: 
N1, N2. ... AND Nk ARE RESPECTIVELY A1, A2...Ak where a relation holds between 
each noun Ni and the corresponding adjective Ai. These strings cannot be generated for 
any k by a context-free grammar. 

More obvious is the inadequacy of the context-free structural descriptions. Chomsky 
[7, 11, 12] pointed out that no c.f. grammar can generate the correct structure for a 
sequence of adjectives modifying a noun. 

* Except in a very simple case of no linguistic interest. 



In the cases (1) and (2) above the Noun Phrase has been given too much structure by a 
c.f. grammar. Very frequent too are the cases where no structure can be given at all by a 
c.f. grammar: the ambiguous phrase: 

THE FEAR OF THE ENEMY 

cannot be given two different structures showing the two possible interpretations, the same 
remark applies to phrases of the type: 

VISITING RELATIVES. 

Another case of lack of information in the structural description given by a context- 
free grammar is the following: 

(i) THE EXPERIMENT IS BOUND TO FAIL 
BOUND and TO FAIL have to be connected but nothing can tell that EXPERIMENT is 
subject of TO FAIL. 

Once a context-free structure is given to (i) it is not very simple to give a different one 
to the sentence: 

(ii) THE EXPERIMENT IS IMPOSSIBLE TO REALIZE 
where EXPERIMENT is object of TO REALIZE. 

In any case, if two different structures are given to (i) and (ii), nothing will tell any more 
that these two sentences are very similar. 

All these examples are beyond the power of context-free grammars. Adequate treatments 
are possible when using transformational grammars (Chomsky) but these grammars, more 
difficult to construct and to use, have been disregarded in the field of M.T. on the grounds 
that they could not be used in a computer, which is false. The programming language 
COMIT uses precisely the formalism of transformations. Matthews is working on a recog- 
nition routine which is using a generative transformational grammar [28], [29]. 

The interest of a word for word translation being very limited [30] a scheme of transla- 
tion sentence for sentence motivated the construction of grammars. 
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c.f. structures: 
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Every sentence requires to be given a structural description, and a transfer grammar 
maps input trees into output trees. Considered from a formal point of view, a transfer 
grammar is precisely a transformational grammar. 

 

The construction of a transfer grammar between two context-free grammars raises 
serious problems. 

Let us consider the following example of translation from English to French taken from 
Klima [31]. 

(a) HE DWELLED ON ITS ADVANTAGES 
an almost word for word translation gives the French equivalent: 

(a') IL A INSISTE SUR SES AVANTAGES 
but let us consider the passive form (p) of the sentence (a): 

(p) ITS ADVANTAGES WERE DWELLED ON BY HIM 

in French (a') has no passive form and (b) has for translation the sentence (a'). What is 
required for the translation of (p) is either a transformation of a French passive non-sentence 
(p') (obtained almost word for word): 

(p') *SES AVANTAGES ONT ETE INSISTE SUR PAR LUI 

into the sentence (a') or a transformation of (p) into (a), made before the translation. The 
two solutions are equivalent from the point of view of the operations to be carried out but 
the second seems more natural. 

In the latter case, since the passive sentences are described by the means of the active 
sentences and a transformation, no context-free description of the passive sentences is 
longer required in the source grammar. Many other cases of the type above show that the 
use of a transformational source grammar will simplify the transfer grammar, moreover 
Chomsky has shown that transformational grammars simplify considerably the description 
of languages. These are two good reasons for M.T. searchers to become interested in models 
which are less limited than context-free models. 
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