
[Automatic Translation of Languages: NATO Summer School…July 1962]

AUTOMATIC TRANSLATION OF LANGUAGES*

A. F . R. BR O W N

Georgetown University, Washington, D.C.

1. MACHINE TRANSLATION AS A TASK—AVAILABLE TOOLS AND GENERAL
METHODS

THERE are various possible ways of thinking about mechanical translation of languages;
one of them is as a task which deserves to be attempted. We know that a perfect translation
cannot be achieved; we also know that a crude word-for-word translation can be carried
out by machine. The interesting question is: How good a translation can we make by
computer in the foreseeable future?

There is no way to answer this question without trying. A priori answers will range from
‘a translation which will eliminate most human translation work’ to ‘no translation which
could under any circumstances be worth having’. No doubt the truth lies in the middle, but
in dealing with something as intractable as natural language there is really no way of pre-
dicting what can be achieved in a few years of intelligent work without doing the work. So I
intend to discuss machine translation in the context of a hypothetical task, that of work-
ing for two or three years on a pair of languages, with the expectation that the work will
culminate in putting some kind of translation system on a computer; not in order to prove a
thesis about the potential of automatic translation, but in order to see what can be achieved;
what unexpected problems come to light; what expected problems turn out to be manage-
able; and what problems are brought closer to solution by the help of mechanical data-
processing methods.

It is worth beginning with a discussion of machines. Everyone knows that electronic
computers can store large amounts of information and can make decisions very rapidly.
The question is how their powers compare with the requirements of an automatic translation
system. I shall consider the IBM 7090 as a typical machine of the sort that one would
consider first for machine translation. It is not necessarily the most efficient in its class,
but it is not, at any rate, much below the leader in efficiency. The class of computers including
the 7090 is not quite the most powerful in existence, but any computer that is markedly more
powerful than the 7090 is not easily available today. On the other hand, any machine much
smaller than the 7090 class will necessarily be less efficient for most purposes, including
machine translation. By ‘less efficient’ I do not mean that a worse translation would neces-
sarily be produced by a smaller computer. In theory, any automatic translation algorithm
which the wit of man can devise could be programmed for any computer with magnetic
tapes. But as a general rule, a machine which is twice as small will handle any algorithm
more than twice as slowly; so it will be less efficient in terms of running cost.

The first difficulty that usually comes to mind is the dictionary. Making a dictionary is
very laborious for human beings, but storing it and using it are no problem for a 7090.
Let us imagine a dictionary with 100,000 entries. This looks like a very generous
estimate of

* Presented at the NATO Advanced Study Institute on Automatic Translation of Languages:
Venice, 15-31 July, 1962.

27

28 A. F. R. BROWN

the number that might be necessary for translating one language to another. Now imagine
that each entry contains, on an average, 100 characters. This is also a rather generous esti-
mate, allowing 15 characters for the word in the input language, 15 characters for its
equivalent in the output language, and 70 characters for whatever other information will
be needed. Seventy characters is equivalent to 105 ordinary numerical digits, or 420 binary
digits; i.e. this amount of space can furnish the answers to as many as 420 ‘yes/no’ questions.
For the average dictionary entry, this is generous. So the size of the imaginary dictionary
will be about 10,000,000 characters. This is comfortably within the capacity of one reel of
magnetic tape for the 7090. Since a 7090 normally has room for at least ten magnetic tapes
to be attached to it at once, it is clear that the mere size of the dictionary will not present a
storage problem.

The next question that naturally arises is: Given such a dictionary, how can it be consulted
with reasonable speed? Once again, the fact is that quite conventional methods will suffice.
One magnetic tape can be read by the 7090 at the rate of 60,000 characters/sec; most 7090
computers actually have two channels for magnetic tape reading and writing, which can be
used simultaneously. This means that they can read in information at the rate of 120,000
characters/sec. (It is possible for a 7090 to have as many as eight channels, through which it
could read almost 480,000 characters/sec, but in practice two channels is the usual equip-
ment.)

At 120,000 characters/sec, the imaginary dictionary of 10,000,000 characters could be
read by the computer in 80 or 90 sec. The way to minimize the average time needed to look
up a word in the dictionary is to make sure that every time 80 or 90 sec are spent in reading
through the dictionary, as many words as possible are looked up during the reading. It is
not difficult to look up 2000 words during one reading of the dictionary, thus using an
average of 40 msec to look up each word. With a more complicated program, the size of the
batch can be increased from 2000 words to 4000 or even 10,000, so that if necessary the
average dictionary time per word could be reduced to 8 or 9 msec.

The way in which a single reading of the dictionary serves to look up several thousand
words is very simple in principle. If a human being had to look up two thousand different
words in a large dictionary, he might write each word on one card, sort the cards into
alphabetical order, and then work through the pile of cards during a single reading of the
dictionary from A to Z. For a computer, the sorting of the words into alphabetical order is a
simple procedure, but the time required for the sort increases faster than the size of the
group of words to be sorted; thus there is some optimum number of words to look up during
a single reading of the machine dictionary. This optimum number will depend on several
factors; 2000 words in a batch is certainly less than the optimum number.

It is possible to imagine quite different strategies for dictionary look-up, and storage
devices other than magnetic tape may be invented for dictionaries. But in the present stage
of development I think it is worth emphasizing that with a standard, general-purpose
computer of the present day, using quite a simple program, one can consult a very large
dictionary at the rate of at least 25 words/sec, or, to put it into a different light, 90,000
words/h. Thus the problem of dictionary size is not a critical one in machine translation.
The real problems lie elsewhere, and research aimed at increasing the speed of dictionary-
handling cannot do much to help the development of machine translation. Such research
is worth doing, of course, but it can only improve the efficiency of a machine translation
system; it cannot improve the quality of the translation, or even change a proposed system
from unfeasible to feasible.

Automatic Translation of Languages 29

Of course a dictionary is not enough. It can only furnish the raw material which must
somehow be converted into a translation, or at least the best possible approximation to a
translation. The computer is called on to make a great many decisions and changes in the
raw material, between the time it comes from the dictionary and the time the finished
product is written out. This processing actually takes longer than the dictionary look-up.

A 7090 computer has a memory access time of a little less than 2.5 μsec, and an ordinary
instruction time of somewhat less than 5 μsec. That is, it can carry out about 200,000 instruc-
tions/sec. If one compares one of these 7090 instructions to an atom, then a simple lin-
guistic decision will be comparable to a molecule of some protein substance. No exact
numerical comparison can be given; but suppose the computer has to count the number of
adjectives in a sentence, and that the number is three. This counting might require something
between a hundred and a thousand 7090 instructions to be executed, and this would take
from 0.5 to 5 msec. It is easy to believe that a thousand decisions like this would have to be
made during the processing of one sentence of average length, consuming between 0.5 and
5 sec. In my own experience, the actual time will be closer to the lower limit—say 1 sec, for
simplicity in discussion.

Then for a sentence of ten words, with a dictionary system like the one I have described,
400msec would be consumed in looking up the words in the dictionary, and 1000msec in
turning what was taken from the dictionary into what is written out as the translation.
These figures are all so approximate that they cannot prove anything in detail. But they
suggest, I hope convincingly, that a huge dictionary does not present any great problem of
speed; that the logical decisions involved in translation take longer than the mere consulta-
tion of the dictionary, and that an over-all speed of 25,000 words/h is easy to achieve, as far
as machine speed is concerned. This rate of production would not be commercially profitable,
but it would certainly be adequate for purposes of research and development. In other
words, the difference between 10,000 and 100,000 words/hr might well be the difference
between loss and profit if machine translation were attempted commercially, but it would
not be the difference between feasibility and unfeasibility in the work of developing a system
of machine translation.

I have gone into some detail about speeds because I am convinced that speed, at present,
is no problem, and one’s primary attention should be fixed on the questions of finding
methods for translation by rigorous, non-intuitive procedures, and of facilitating the human
work of communicating these procedures to the machine, interpreting the results given back
by the machine, and correcting the procedures.

Most machine translation research projects show an obvious division into a linguistic
section and a programming section. This reflects not only a certain natural division of
skills between linguists and programmers, but also the division between information about
languages which ought to be valid without reference to any machine, and techniques of
giving the information to a particular machine for a particular purpose. One would suppose
that the division between linguists and programmers is unfortunate, even if necessary. In
principle it is unfortunate, because communication between the linguists and the program-
mers is never easy. But in practice, the division is always broken down to some extent, where
it ought to be rigorously maintained.

In the early stages of producing some kind of program and bringing it to a machine for
testing, a procedure is usually adopted by which the linguists write the dictionary, and the
statements of procedure, in a form which will be as easy for the programmers to handle as
possible. Three evils result from this. First, the programmers lose their freedom. Too close a

30 A. F. R. BROWN

liaison is established between linguists who understand a very little about programming,
and programmers who understand a very little about languages; and the basis of their
liaison is the first attempt at a system, which will need to be superseded completely in a year.
Second, the programmers are made lazy because their job looks deceptively easy at the be-
ginning. Third, linguists get the habit of talking in numbers instead of words—for some
people, it is more enjoyable to say “This item has code 2 in position 36” than to say “This
item is a verb”. Some linguists may even be seduced into playing with numerical methods
for solving problems that are not at all numerical.

One of the greatest difficulties in getting linguistic statements into a machine is the need
for rigor. When a competent linguist begins to make statements for machine translation,
he may not realize that these statements have to represent procedures, not merely passive
descriptions. Once he begins making procedural statements, most of them will be, strictly
speaking, unprogrammable. They will leave too many possibilities unaccounted for, and
will probably contain endless loops. It is up to the programmers to add rigor to the lin-
guistic statements, and to get the linguists’ informed consent to this. At first the linguists
are reluctant, but later they are too willing to leave the burden of rigor to the programmers,
especially if there is a satisfactory liaison between the two groups. Yet the best results in
machine translation research cannot be obtained until the linguists can devise procedures
that are not only ingenious, but also well-organized.

So I believe that from the very beginning of a research effort, the linguists should try to
formalize their statements in some kind of coding language which forces them to be rigorous
and procedural, but is not much affected by considerations of how it will ultimately be
implemented by a computer. Such a coding language should be developed and improved
to suit the linguists, not the programmers. The programmers will have the job of making
the computer accept and implement statements in the coding language. This is a formidable
task, but in fact it can be a satisfactory one for the programmers because it is not endless,
and leaves them their proper freedom. The machine translation system, as expressed in the
special coding language, will never be completed, but the computer programs for operating
on the special coding language can be completed; and they can be altered or moved to a
different computer without disturbing the linguists.

The advantage to the linguists will be that they, or at least some of them, will become
accustomed to making their statements in a rigorous way; they will not be dependent on
the programmers for having the T’s crossed and the I’s dotted.

Because I believe that the purely mechanical problems of automatic translation should
not concern linguists once they have begun work on a pair of languages, I shall say no more
about computers as such, or about bits, machine words, memory sizes, and so on. I shall
speak in terms of an imaginary system of coding dictionary entries and linguistic operations,
and assume that statements in this coding language could be accepted and implemented by
a suitable program on any computer. The only way in which this coding language will be
conditioned by electronic realities is that it will use only a standard set of IBM characters:
the twenty-six letters, the ten digits, the blank, and the extra symbols = + - $ * () , / and .

2. ARABIC-TO-ENGLISH TRANSLATION AS A HYPOTHETICAL PROBLEM—
MORPHOLOGY AND DICTIONARY CODING

I have chosen Arabic-to-English machine translation as a hypothetical task, in order to
illustrate some simple general methods of attack on MT problems. A European language
would have had the advantage that less preliminary explanation would be necessary; on the

Automatic Translation of Languages 31

other hand you all know too much about European languages to come to any of them with a
fresh mind. I do not want to describe an input language with the proper linguistic rigor;
this would take too long, and in fact such a description is not the proper starting point for
machine translation. On the other hand, I do not want to describe a European input language
summarily, and leave all those who know the language dissatisfied from the very beginning.
So I chose Arabic, which is not enormously different in its syntax from a European language
in any case.

When I started writing this paper, I was trapped, indirectly, by exactly the error which I
intended to combat most vigorously. The syntax of Arabic is simpler than that of any
European language, and it has been well-described for centuries. This means that one could,
in some sense, ‘program the grammar’ of Arabic quite easily—much more easily than for
Russian. But in fact this does not help as much as I unconsciously expected, and you will
notice a progressive loss of exhaustiveness as these lectures go on. The descriptive grammar
of the input language has to be known, but programming it would be no help; we need a
recognition procedure, and this is infinitely more difficult.

Printed Arabic represents, not quite completely, a language with twenty-eight conso-
nants, three short vowels, three corresponding long vowels, and a possibility of doubling
consonants. Normally, the short vowels are not represented in printing at all; the long
vowels are represented by consonant signs; and the doubling of consonants is not repre-
sented. This should leave a remarkably simple system, though one which is sometimes a little
hard to read. There are a few residual complexities, however. One of the consonants has a
special symbol when it represents a feminine ending (this is a compromise between two pro-
nunciations of the feminine ending). Another consonant (the hamza, or glottal stop) can be
represented in several different ways, according to its surroundings. One of the long vowels
can be written in two different ways at the end of a word, according to its etymology.

Now obviously the first problem of machine translation from Arabic to English is how
to represent Arabic on punched cards, using only an IBM set of characters, without losing
information available in the printed text, and without adding any information from the card-
puncher’s own knowledge of Arabic. The transliteration I am about to describe fits these
conditions (with an exception noted for the letter I), but I shall not stop to justify it in detail.
For the benefit of those who know Arabic, or who will be curious afterwards, I will merely
sketch the correspondences between characters as printed in Arabic and the characters and
digraphs to be keypunched.

A alif without hamza; or with hamza above, if at the beginning of a word.
AA alif with madda
I hamza with no supporter; or alif, waw, or ya with hamza except alif with hamza

above it at the beginning of a word. (A very slight loss of information is accepted
here for the sake of simplicity in exposition.)

B ba
T ta
X ta marbuta (the special form of ‘t’ used as the feminine ending for nouns and adjectives).
T/ tha
J jim
H/ ha
K/ kha
D dal

32 A. F. R. BROWN

D/ dhal
R rai
Z zain
S sin
S/ shin
S. ṣad
D. ḍad
T. ṭa
Z. ẓa
C ain
G ghain
F fa
Q qaf
K kaf
L lam
M mim
N nun
H ha
W waw
Y ya (with dots)
A/ ya, without dots, at the end of a word (ya without dots in the middle of a word occurs

only as the supporter of hamza, and so is represented by ‘I’).

In printing, the three long vowels ‘aa’, ‘ii’, and ‘uu’ are represented by alif without hamza,
ya, and waw; thus in the transcription I am using they will be represented by A, Y and W.

Arabic words represented in this transcription are going to appear unpronounceable.
This is unfortunate, but ordinary printed Arabic is only pronounceable because a person
who knows the language knows what unwritten short vowels to introduce between the
consonants, and knows when Y and W represent consonants and when they represent long
vowels. However, present-day machine translation research deals only with the printed word;
so the unpronounceability is inconvenient but not significant.

I shall now give an outline of Arabic morphology as it would appear in this transcrip-
tion. To reduce the size of the presentation, certain classes of forms which occur com-
paratively rarely in ordinary printed texts have been left out: second person forms, third
person plural feminine forms, and all dual forms. These omissions eliminate certain kinds
of homography, and therefore simplify certain problems illegitimately; but enough kinds
of homography remain to illustrate the general problem. For those who have studied
written Arabic, it is also worth noting that I am ignoring here the traditional ten or fifteen
‘forms’ in which an Arabic verbal root can appear. The ‘forms’ are important to a descrip-
tive linguistic study of Arabic morphology, but from the point of view of machine transla-
tion they are bound to be treated as separate lexical items.

Nouns

An Arabic noun is either masculine or feminine; it displays one of three cases (nomi-
native, accusative, or genitive); one of three numbers (singular, dual, or plural); and one
of three ‘states’—definite (defined by a preceding definite article), construct (defined by an
immediately following noun in the genitive case), or indefinite (not defined in either way).

Automatic Translation of Languages 33

Here is the paradigm of a masculine noun, NJAR (‘a carpenter’), leaving out the dual:

Sing. Def. Sing.Indef. Plur. Def. Plur.Cstr.
or Cstr. or Indef.

Nominative NJAR NJAR NJARWN NJARW
Accusative NJAR NJARA NJARYN NJARY
Genitive NJAR NJAR NJARYN NJARY

This suggests how a dictionary entry and a paradigm might be coded, in a hypothetical
coding system for the linguist:
NJAR = P1 NOUN+MASC *CARPENTER $S
$ PARADIGM 1 (FOR MASCULINE TRIPTOTE NOUNS WITH SOUND

PLURALS)
- SING+(NOM/ACC/GEN+DEF/CSTR)/(NOM/GEN+INDEF)
A SING+ACC+INDEF
WN PLUR+NOM + DEF/INDEF
YN PLUR+ACC/GEN+DEF/INDEF
W PLUR+NOM +CSTR
Y PLUR+ACC/GEN+CSTR

Unfortunately this is not quite the whole story. To any of the construct forms one may
add a ‘possessive suffix’; thus the suffix NA (meaning ‘our’) would produce the forms
NJARNA, NJARWNA, and NJARYNA. While these suffixes are treated in the traditional
grammar as separate words, they are written as suffixes, and so machine translation mor-
phology must treat them as part of the noun inflection. The list of suffixes (excluding duals,
second person forms, and the third person plural feminine form) is: Y (‘my’), H (‘his’),
HA (‘her’), NA (‘our’), and HM (‘their’). When the suffix Y is added to either of the construct
forms NJARW and NJARY, the result is simply NJARY.

So we need a rather more complicated paradigm:

$ PARADIGM 1 (FOR MASCULINE TRIPTOTE NOUNS WITH SOUND
PLURALS)

- SING+(NOM/ACC/GEN+DEF/CSTR)/(NOM/GEN+INDEF)
Y (PLUR+ACC/GEN+CSTR)/(SING/PLUR+NOM/ACC/GEN+MY)
H SING+NOM/ACC/GEN+HIS
HA SING+NOM/ACC/GEN+HER
NA SING+NOM/ACC/GEN+OUR
HM SING+NOM/ACC/GEN+THEIR
A SING+ACC+INDEF
WN PLUR+NOM+DEF/INDEF
YN PLUR+ACC/GEN+DEF/INDEF
W PLUR+NOM+CSTR
WH PLUR+NOM +HIS
WHA PLUR+NOM +HER
WNA PLUR+NOM +OUR
WHM PLUR+NOM+THEIR
YH PLUR+ACC/GEN+HIS
YHA PLUR+ACC/GEN+HER
YNA PLUR+ACC/GEN+OUR
YHM PLUR+ACC/GEN+THEIR

34 A. F. R. BROWN

NJAR is actually untypical of Arabic nouns, in that it has a plural formed from the
singular by adding an ending (WN W YN or Y). The vast majority of nouns form their
plurals by modifying their stems, in ways which are only sometimes predictable. For instance,
the plural of KTAB (book) is KTB; the plural of S/BAK (window) is S/BABYK. These
plurals, traditionally called ‘broken plurals’, are inflected like singulars. So we can set up
another paradigm:

$ PARADIGM 2 (FOR MASCULINE TRIPTOTE SINGULARS AND BROKEN
PLURALS)

- (NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN + INDEF)
Y NOM/ACC/GEN + MY
H NOM/ACC/GEN + HIS
HA NOM/ACC/GEN + HER
NA NOM/ACC/GEN + OUR
HM NOM/ACC/GEN + THEIR
A ACC +INDEF

For KTAB and KTB we shall have two dictionary entries:

KTAB = P2 NOUN+MASC +SING *BOOK $S
KTB = P2 NOUN + MASC + PLUR *BOOK $S

Unfortunately, the left-hand end of a noun is not stable. The definite article, ordinarily
spelt AL, is never written as a separate word; it is prefixed to a noun or adjective, which
must be in the definite state (and therefore not followed by a possessive suffix). For NJAR
and KTAB, the possible forms with the definite article are ALNJAR, ALNJARWN,
ALNJARYN, ALKTAB, and ALKTB.

Furthermore, there are three prepositions, B L and K, which can precede any genitive
noun form, and must be joined to it in writing. So forms like BNJAR, BALNJAR,
BNJARYN, BALNJARYN, BNJARYNA, BKTBHM are possible. When the preposition
L precedes the definite article, the combination is written LL, not LAL.

Finally, either the copula W or the conjunction F can be added at the beginning of any
word. So we can say that the set of possible prefixes to nouns is AL WAL FAL B WB FB
BAL WBAL FBAL L WL FL LL WLL FLL K WK FK KAL WKAL FKAL W and F.

To say the least, these prefixes pose a problem. I have already pointed out that in order
to speed up the use of the dictionary, it is essential to have a large group of words from the
input text sorted into alphabetical order. This is quite straightforward for a language like
French or Italian, in which inflection takes place only at the end of a word. If a language
were inflected only at the beginnings of words, one could reverse the strategy; or indeed
one could reverse every word in the text and also reverse the words in the dictionary, and
then follow the same strategy as for French.

But when both ends of a word may be inflected, it is difficult to see how to put it into
alphabetical order with other words. For Arabic, the following solution will work. The pro-
gram which reads the input text and stores the Arabic words must be directed to examine
every word to see whether it begins with one of a list of allowable prefixes. If not, the word
is handled just as it is; but if so, the word is handled as four words in series, like this:

KTAB is handled as K + + + + TAB KTAB
WLKTABHM is handled as WL + + + + KTABHM WLKTABHM

Automatic Translation of Languages 35

Now the four ‘words’ WL + + + + KTABHM and WLKTABHM can be sorted into
alphabetical order before the dictionary is consulted, and returned to the original order
after the dictionary has been completely read. If it turns out that WLKTABHM is a word
in its own right, the three preceding ‘words’ will be discarded. If WLKTABHM is not a
word in the dictionary, but KTABHM is, then WLKTABHM will be discarded, and the
linguistic program will have to make the proper disposition of the copula-preposition
group WL, the link + + + + , and the noun KTABHM.

In the hypothetical coding system, the linguist might specify the prefixes in this way:

$ PREFIX AL
$ PREFIX WAL

The two nouns KTAB (singular) and KTB (broken plural) have been called ‘triptotes’.
The opposite of ‘triptote’ in this context is ‘diptote’; the only difference is that the form
ending in A (accusative indefinite) does not occur in a diptote, and the form with ‘zero’
ending serves for all cases and states. Many broken plurals are diptotes, but diptote singulars
never have regular plurals, so we need only one paradigm for all sorts of masculine diptotes:

$ PARADIGM 3 (FOR MASCULINE DIPTOTE SINGULARS AND BROKEN
PLURALS)

- NOM/ACC/GEN + DEF/CSTR/INDEF
Y NOM/ACC/GEN+MY
H NOM/ACC/GEN+HIS
HA NOM/ACC/GEN+HER
NA NOM/ACC/GEN+OUR
HM NOM/ACC/GEN + THEIR

Feminine nouns are actually somewhat simpler in inflection than masculines. The
singular form, e.g. BQRX (a cow), serves for all cases and states without a possessive
suffix. The feminine ending X is changed to T before possessive suffixes. In the regular
plural, the final X is changed to AT (e.g. BQRAT) for all cases and states, and this is also
the plural form to which possessive suffixes are added. So we can establish another para-
digm:

$ PARADIGM 4 (FOR FEMININE NOUNS WITH SOUND PLURALS)
X NOM/ACC/GEN + DEF/CSTR/INDEF + SING
AT NOM/ACC/GEN+DEF/CSTR/INDEF+PLUR
TY NOM/ACC/GEN+SING + MY
TH NOM/ACC/GEN+SING + HIS
THA NOM/ACC/GEN+SING + HER
TNA NOM/ACC/GEN+SING + OUR
THM NOM/ACC/GEN + SING + THEIR
ATY NOM/ACC/GEN+PLUR + MY
ATH NOM/ACC/GEN+PLUR + HIS
ATHA NOM/ACC/GEN+PLUR + HER
ATNA NOM/ACC/GEN+PLUR + OUR
ATHM NOM/ACC/GEN + PLUR + THEIR

But as with masculine nouns, the great majority of feminine nouns take broken plurals.
And indeed most feminine singular nouns have broken plurals which are masculine in form,

36 A. F. R. BROWN

while some masculine singulars have broken plurals which are feminine in form. This does
not cause any trouble, as it happens. But we need another paradigm for singular nouns that
are feminine in form and have no regular plural, and for broken plurals that are feminine
in form:

$ PARADIGM 5 (FOR SINGULARS AND BROKEN PLURALS THAT ARE FEMI-
 NINE IN FORM)
X NOM/ACC/GEN+DEF/CSTR/INDEF
TY NOM/ACC/GEN+MY
TH NOM/ACC/GEN+HIS
THA NOM/ACC/GEN+HER
TNA NOM/ACC/GEN+OUR
THM NOM/ACC/GEN+THEIR

Adjectives

Adjectives are inflected just like nouns, in principle. However, they are not often used
in the construct state, or with possessive suffixes attached to them, so I shall ignore these
possibilities for simplicity. The following paradigm could be used for adjectives that have
sound plurals:

$ PARADIGM 6 (ADJECTIVES WITH SOUND PLURALS)
- MASC+SING+(NOM/ACC/GEN+DEF)/(NOM/GEN+INDEF)
A MASC+SING+ACC+INDEF
WN MASC+PLUR+NOM+DEF/INDEF
YN MASC+PLUR+ACC/GEN+DEF/INDEF
X FEM +SING+NOM/ACC/GEN+DEF/INDEF
AT FEM+PLUR+NOM/ACC/GEN+DEF/INDEF

For adjectives without sound plurals, this paradigm could be used:

$ PARADIGM 7 (ADJECTIVES WITHOUT SOUND PLURALS)
- MASC+SING+(NOM/ACC/GEN+DEF)/(NOM/GEN+INDEF)
A MASC+SING+ACC+INDEF
X FEM + SING+NOM/ACC/GEN+DEF/INDEF

and for broken plurals of adjectives, this paradigm:

$ PARADIGM 8 (BROKEN PLURALS OF ADJECTIVES)
- MASC/FEM+PLUR+(NOM/ACC/GEN+DEF)/(NOM/GEN+INDEF)
A MASC/FEM+PLUR+ACC+INDEF

Broken plural adjectives which have the feminine ending, or are diptote, are invariable
words.

Verbs

As it is ordinarily printed, the conjugation of an Arabic verb is not very complicated,
and in a sense there are no irregular verbs. But the roots which are traditionally called
‘weak’ give rise to verb-classes which are somewhat analogous to the conjugations of a
Romance language. In addition, verbs can take direct object suffixes, just as nouns can take
possessive suffixes. Finally, the forms of the imperfect tense are inflected at both ends.

Automatic Translation of Languages 37

Here is the conjugation of a ‘strong’ verb. Notice that the form KTB can mean either
‘he wrote’ or ‘books’. This kind of homography is very common in Arabic. Homophonies
are much less common, but the suppression of short vowels in printing produces many
homographies.

Perfect tense

KTB (he wrote) KTBWA (they wrote)
KTBT (she wrote)
KTBT (I wrote) KTBNA (we wrote)

Imperfect tense

YKTB (he writes) YKTBWN (they write)
TKTB (she writes)
AKTB (I write) NKTB (we write)

The participles are KATB (active) and MKTWB (passive), but it is likely that participles
would have to be carried in the dictionary as separate entries; so they are not included in
this paradigm. The infinitive does not exist in Arabic (subordinate clauses and verbal
nouns are used instead).

The imperfect as given above is actually the imperfect indicative; there are also an
imperfect subjunctive and an imperfect jussive; but in the normal printed forms they differ
from the indicative only in having YKTBWA instead of YKTBWN. It would therefore be
convenient for the linguist to have codes INDIC, SUBJ, and JUSS available, but to have a
rule that IMPF without any of them was equivalent to IMPF+INDIC/SUBJ/JUSS.

The paradigm must really be expanded, to take care of the direct object suffixes:

KTB (he wrote) KTBWA YKTB YKTBWN YKTBWA
KTBH (he wrote him) KTBWH YKTBH YKTBWNH YKTBWH
KTBHA (he wrote her) KTBWHA YKTBHA YKTBWNHA YKTBWHA
KTBNY (he wrote me) KTBWNY YKTBNY YKTBWNNY YKTBWNY
KTBHM (he wrote them) KTBWHM YKTBHM YKTBWNHM YKTBWHM
KTBNA (he wrote us) KTBWNA YKTBNA YKTBWNNA YKTBWNA

KTBT TKTB
KTBTH TKTBH
KTBTHA TKTBHA
KTBTNY TKTBNY
KTBTHM TKTBHM
KTBTNA TKTBNA

KTBT KTBNA AKTB NKTB
KTBTH KTBNAH AKTBH NKTBH
KTBHA KTBNAHA AKTBHA NKTBHA
KTBTHM KTBNAHM AKTBHM NKTBHM

38 A. F. R. BROWN

But since machine translation paradigms of the type I am proposing cannot handle the
prefixes Y T A and N, the verbal paradigm will have to be somewhat simpler:

$ PARADIGM 11 (STRONG VERBS)
- PERF+HE
H PERF+HE + HIM
HA PERF + HE + HERR (HERR is arbitrarily used as a symbol for the
NY PERF+HE + ME third person feminine direct object suffix, in
NA PERF+(HE + US)/WE contrast to HER for the third person
T PERF+SHE/I feminine possessive)
TH PERF+SHE/I + HIM
THA PERF+SHE/I+HERR
TNY PERF + SHE + ME
THM PERF +SHE/I + THEM
TNA PERF + SHE + US
WA PERF+THEY
WH PERF+THEY+HIM
WHA PERF +THEY + HERR
WNY PERF + THEY + ME
WHM PERF+THEY+THEM
WNA PERF + THEY+US
NAH PERF + WE + HIM
NAHA PERF + WE + HERR
NAHM PERF+WE+THEM
WN IMPF+INDIC + THEY
WNH IMPF+INDIC+THEY + HIM
WNHA IMPF+INDIC+THEY+HERR
WNNY IMPF+INDIC+THEY+ME
WNHM IMPF+INDIC+THEY+THEM
WNNA IMPF+INDIC+THEY+US

Since the paradigm does nothing for the prefixes of the imperfect, it is necessary to
define the prefixes as follows:

$ PREFIX Y
$ PREFIX T
$ PREFIX A
$ PREFIX N

And in fact an imperfect form can be further prefixed with the adverb S (indicating future
time) or the conjunction L (indicating purpose); and either the conjunction F or the copula
W can be still further prefixed. So prefixes SY ST SI (not SA) SN LY LT LI LN WY WT
WI WN FY FT FI WSY WST WSI WSN must also be defined.

Then when the word YKTBHM occurs in the text, it will be read as Y + + + +
KTBHM YKTBHM; YKTBHM will not be found in the dictionary, but KTBHM will be;
and there must be a linguistic operation to delete Y + + + + from the sentence, but
in exchange to alter PERF+HE+THEM to IMPF+HE+THEM in the grammatical
coding obtained for KTBHM.

Many verbs are conjugated like KTB except for a single difference; the perfect forms all

Automatic Translation of Languages 39

have the A prefix. Such verbs are appropriately assigned to the same paradigm as KTB,
because their endings are identical. But a special code—say PFPX—should be given to
their stems in the dictionary, by which the interpretation of an A prefix can be modified.

Weak verbs

Several more ‘conjugations’ for Arabic verbs result from phonetic alterations. In
describing them, I shall ignore the question of the direct object suffixes, since they are added
to the verbal forms with perfect regularity.

'Doubled' verbs

Perfect Tense Imperfect Tense

Indicative Subjunctive Jussive

MD MDWA YMD YMDWN YMD YMDWA YMDD YMDWA
MDT TMD TMD TMDD
MDDT MDDNA AMD NMD AMD NMD AMDD NMDD

If we allow the character * in a paradigm to stand for any character (or digraph) identical
with the preceding one, this can be handled by the paradigm:

$ PARADIGM 12 (DOUBLED VERBS)
- PERF + HE
T PERF+SHE
*T PERF + I
WA PERF+THEY
*NA PERF+WE
WN IMPF + INDIC + THEY
* IMPF+JUSS +HE/SHE/I/WE

'Hollow' verbs

Perfect Tense Imperfect Tense

Indicative Subjunctive Jussive

QAL QALWA YQWL YQWLWN YQWL YQWLWA YQL YQWLWA
QALT TQWL TQWL TQL
QLT QLNA AQWL NQWL AQWL NQWL AQL NQL

This kind of verb will require three entries in the dictionary, for stems (e.g.) QAL, QWL,
and QL; and three paradigms have to be provided:

$ PARADIGM 131 (HOLLOW VERBS—HOLLOW PERFECT FORMS)
- PERF+HE
T PERF + SHE
WA PERF+THEY
$ PARADIGM 132 (HOLLOW VERBS—HOLLOW IMPERFECT FORMS)
- IMPF + INDIC/SUBJ + HE/SHE/I/WE
WN IMPF + INDIC+THEY
WA IMPF+ SUBJ/JUSS +THEY
$ PARADIGM 133 (HOLLOW VERBS—NON-HOLLOW FORMS)
- IMP + JUSS + HE/SHE/I/WE
T PERF+I

40 A. F. R. BROWN

'Defective’ verbs with third radical ya

Perfect Tense Imperfect Tense

Indicative Subjunctive Jussive

RMA/ RMWA YRMY YRMWN YRMY YRMWA YRM YRMWA
RMT TRMY TRMY TRM
RMYT RMYNA ARMY NRMY ARMY NRMY ARM NRM

These forms can be handled by a single dictionary entry with the stem RM, and a paradigm
like this:

$ PARADIGM 14 (DEFECTIVE VERBS IN YA)
A/ PERF+HE
T PERF+SHE
YT PERF+I
WA PERF+THEY
YNA PERF+WE
Y IMPF+INDIC/SUBJ+HE/SHE/I/WE
WN IMPF+INDIC+THEY

IMPF+JUSS + HE/SHE/I/WE

'Defective' verbs with third radical waw

Perfect Tense Imperfect Tense

Indicative Subjunctive Jussive

NDA NDWA YNDW YNDWN YNDW YNDWA YND YNDWA
NDT TNDW TNDW TND
NDWT NDWNA ANDW NNDW ANDW NNDW AND NND

These forms can be handled by a single dictionary entry with the stem ND, and a paradigm
like this:

$ PARADIGM 15 (DEFECTIVE VERBS IN WAW)
A PERF+HE
T PERF+SHE
WT PERF+I
WA PERF+THEY
WNA PERF+WE
W IMPF+INDIC/SUBJ +HE/SHE/I/WE
WN IMPF+INDIC+THEY

IMPF+JUSS+HE/SHE/I/WE

There are a few more conjugation patterns that would have to be accounted for by a trans-
lation system; most of them involve stem changes that would be handled similarly to the
stem changes of hollow verbs.

I noted earlier that, for example, KTBHA could mean either ‘he wrote her’ or ‘her
books’. This kind of homography is only an occasional annoyance in most European
languages, but it is so prominent a feature of Arabic that an extra feature in the dictionary

Automatic Translation of Languages 41

look-up program would be required. There would undoubtedly be two entries in the dic-
tionary, which I may summarize thus:

KTB = P2 NOUN+MASC+PLUR *BOOK $S
KTB = P11 VERB *WRITE $S $/PAST/WROTE $/PPL/WRITTEN

The word KTBHA would be looked up according to both these entries, and indeed any
others in the dictionary that would fit it. If there were only these two entries that fit it, then
the program would handle it as though there were two words KTBHA in the sentence, with
a linking ‘word’ / / / / between them. We might then represent what the dictionary would
produce for KTBHA thus:

KTB = HA NOUN+MASC+PLUR+NOM/ACC/GEN+HER *BOOK $S
/ / / / LINK
KTB = HA VERB+PERF+HE+HERR *WRITE $S I/PAST/WROTE $/PPL/

WRITTEN

For the word YKTBHA the situation would be still more complicated; before the dic-
tionary was looked at, this would have been expanded into four ‘words’: Y + + + +
KTBHA YKTBHA and the look-up program would afterwards produce:

Y PREFIX
+ + + + LINK
KTB = HA NOUN+MASC+PLUR+NOM/ACC/GEN+HER *BOOK $S
/ / / / / LINK
KTB = HA VERB+PERF + HE+HERR *WRITE $S $/PAST/WROTE $/PPL/

WRITTEN
YKTBHA NOT IN DICTIONARY

After dictionary look-up, there has to be a linguistic operation that chooses to retain, e.g.
either Y + + + + KTB = HA / / / / KTB = HA or YKTBHA. Somewhat later in
the process another linguistic operation must choose to retain only one out of each group of
alternatives linked by / / / / .

Arabic is so full of these difficulties that at first sight the situation might look as nearly
hopeless as for machine translation of Babylonian cuneiform. A further discouragement is
that although nouns are supposed to have three cases, it is evident from the description I
have given that a case indication is very rarely visible in the printed text. The only obvious
factor that retrieves the situation somewhat is that Arabic has a surprisingly rigid word
order.

The business of case endings illustrates rather neatly the contrast between a conventional
descriptive grammar and an algorithmic grammatical recognition procedure. If you add to a
conventional description one statement: “The case endings of nouns are not, however,
written except in the following uncommon situations. . . .” you do not spoil it as a descrip-
tion. But if you have to adjust a recognition procedure accordingly, you will probably have
to discard it completely and invent a new one, much more complex than the old one.

3. MACHINE ANALYSIS OF ARABIC SYNTAX

In the last section I discussed ‘morphology’. As far as the practice of machine trans-
lation is concerned, morphology is a branch of the dictionary look-up system. Considering
each word of the input text separately, how can one extract all possible information from it?

42 A. F. R. BROWN

Morphology cannot help us in resolving homographies; groups of words must be considered
for this, and so we are brought to consider the syntax of Arabic before we have quite
finished with morphology in the ordinary sense. To make a recognition procedure work,
we are bound to mix up our levels of linguistic analysis; whereas in ordinary descriptive
linguistics one makes every effort to avoid mixing levels.

I shall base this lecture on one Arabic sentence, chosen almost at random. What the
sentence means is: “Locusts are divided into about two hundred species, but the species
which cause the greatest damage have habits which are nearly similar in reproduction and
development.” In the transcription I have been using, the Arabic is:

YNQSM ALJRAD ALA/H/WALY MAITY NWC, ALA AN ALNWC ALD/Y YSBB
ALD.RR ALJSYM, LH CADAT TKAD TTS/ABH FY ALTWALD WALNMW.

Now in the dictionary look-up process which I described, many of these words would
be broken up by having a prefix taken from the left-hand end (e.g. YNQSM would be handled
as four words, Y + + + + NQSM YNQSM) and some words would be looked up
more than once, according to different entries in the dictionary (e.g. ALD.RR would first
be broken up into AL + + + + D.RR ALD.RR; then D.RR would be looked up
both as a noun and as a verb, with / / / / between them). I shall now represent schemati-
cally what might be obtained from the dictionary for the first ten words of the above Arabic
sentence:

1. Y prefix
2. + + + + link
3. NQSM VERB+PFPX+PERF+HE *BE DIVIDED
4. YNQSM not in dictionary
5. AL prefix
6. + + + + link
7. JRAD NOUN + MASC + SING + (NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN

 + INDEF) *LOCUST $S
8. ALJRAD not in dictionary
9. AL prefix

10. + + + + link
11. A/ not in dictionary
12. ALA/ PREP *TO
13. H/WALY ADVB *APPROXIMATELY
14. MAITY NUMERAL + GEN/ACC + CSTR *TWO HUNDRED
15. N prefix
16. + + + + link
17. WC not in dictionary
18. NWC NOUN + MASC + SING + (NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN

+ INDEF) *KIND $S
19. , COMMA *,
20. AL prefix
21. + + + + link
22. A prefix
23. ALA CONJ *BUT
24. A prefix
25. + + + + link
26. N prefix
27. AN PARTICLE
28. AL prefix
29. + + + + link
30. NWC NOUN + MASC + SING + (NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN
 + INDEF) *KIND $S
31. ALNWC not in dictionary.

Automatic Translation of Languages 43

Now each + + + + in the list above is preceded by a prefix, and followed first by the
de-prefixed residue of a word and then by the whole word. We need a linguistic operation
that might be coded thus:

$ OPERATION ++CHOICE

GO TO LEFT END
AAA RIGHT TO + + + +

RIGHT
QU NOT-IN-DICT NXT-BBB

CCC DELETE
DELETE

DDD DELETE AAA
BBB RIGHT

QU NOT-IN-DICT DDD-NXT
LEFT CCC

An operation consists of a series of commands; every command contains a function,
and may have a 3-letter ‘label’ to the left of the function. To the right of the function one
may specify which command to carry out next, or which to carry out next in case of a ‘yes’
answer to a question, and which in case of ‘no’. NXT in this context means the next follow-
ing command. Where nothing is specified to the right of the function, the next command is
to be executed next; except that in case of a ‘no’ answer, the operation stops. Execution of
an operation begins at the first command.

Operation ‘+ + CHOICE’ will go through the whole sentence and examine the sur-
roundings of each + + + + . Whenever the item next on the right, the residue of a de-
prefixed word, is not in the dictionary, the prefix, link, and residue are deleted from the
sentence, leaving only the original full word. If the residue is in the dictionary, the item
next on its right is tested. This item is the original full word. If it was in the dictionary, it is
retained and the residue, link, and prefix to its left are deleted. If the full word was not in the
dictionary, it is deleted from the sentence, and the prefix, link, and residue are left. This
gives us a sentence like this:

1. Y prefix
2. + + + + link
3. NQSM VERB + PFPX + PERF + HE *BE DIVIDED
4. AL prefix
5. + + + +, link
6. JRAD NOUN+ MASC +SING+(NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN

 + INDEF) *LOCUST $S
7. ALA/ PREP *TO
8. H/WALY ADVB *APPROXIMATELY
9. MAITY NUMERAL+ACC/GEN + CSTR *TWO HUNDRED

10. NWC NOUN+ MASC +SING+(NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN
 +INDEF) *KIND $S
11. , COMMA *,
12. ALA CONJ *BUT
13. AN PARTICLE
14. AL prefix
15. + + + + link

44 A. F. R. BROWN

16. NWC NOUN+ MASC +SING+(NOM/ACC/GEN+DEF/CSTR)/(NOM/GEN
+ INDEF) *KIND $S

17. ALD/Y RELPRON + MASC + SING + NOM/ACC/GEN *WHICH
18. Y prefix
19. +.+ + + link
20. SBB VERB + PERF + HE *CAUSE $S $D $XING
21. //// link
22. SBB NOUN + MASC + SING+(NOM/ACC/GEN+DEF/CSTR)/(NOM/GEN

+INDEF) *REASON $S
23. AL prefix
24. + + + + link
25. D.RR NOUN + MASC + SING+(NOM/ACC/GEN+DEF/CSTR)/(NOM/GEN

+ INDEF) *DAMAGE $S
26. //// link
27. D.RR VERB + PERF + HE *DAMAGE $S $D $XING
28. AL prefix
29. + + + + link
30. JSYM ADJ + MASC + SING + (NOM/ACC/GEN + DEF)/(NOM/GEN + INDEF)

*GREAT
31. , COMMA *,
32. L prefix
33. + + + + link
34. H PRONOUN + MASC + SING + GEN
35. CADAT NOUN + FEM + PLUR + NOM/ACC/GEN + DEF/INDEF/CSTR

*HABIT $S
36. T prefix
37. + + + + link
38. KAD VERB + PERF + HE *BE NEAR
39. //// link
40. KAD VERB + IMPF+INDIC/SUBJ + HE/SHE/I/WE *BE NEAR
41. T prefix
42. + + + + link
43. TS/ABH VERB + PERF + HE *BE SIMILAR
44. FY PREP *IN
45. AL prefix
46. + + + + link
47. TWALD NOUN + MASC + SING + (NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN

+ INDEF) *REPRODUCTION $S
48. WAL prefix
49. + + + + link
50.NMW NOUN + MASC + SING + (NOM/ACC/GEN + DEF/CSTR)/(NOM/GEN

+ INDEF) *DEVELOPMENT $S

The items that resulted from the original word YSBB were more complicated than I have
described so far: Y + + + + SBB //// SBB YSBB. Operation ‘+ + CHOICE’
as laid out on page 17 would not have got rid of YSBB properly, but a somewhat more
complicated operation, which took account of the possibility of encountering the link
//// , could do it.

Before we can go very much further, we must make the choices implied by the / / / /
links at positions 21, 26, and 39. Happily, all of these choices are easy to make because of the
prefixes. Most prefixes will be found attached either to verbs exclusively or to nouns
exclusively. The lists of prefixes I have given may not really be exhaustive even for modern
printed Arabic, but the only non-specific prefixes they contain are the copula W and the
conjunction F, which can be attached to any sort of word.

So let us suppose that every prefix requiring a noun (or adjective) after it is given, in its
dictionary entry, the grammatical code NPFX, and every one that requires a verb is given
VPFX. Then the following operation will clear up most of the choices:

Automatic Translation of Languages 45

$ OPERATION PREFIX-CHOICES
 GO TO LEFT END
AAA RIGHT TO ////
 LEFT
 LEFT

 QU + + + + NXT-BBB
 LEFT

QU NPFX NXT-CCC
AAA RIGHT

RIGHT
QU NOUN/ADJ DDD-NXT

EEE DELETE
RIGHT
DELETE AAA

DDD RIGHT
RIGHT
QU NOUN/ADJ AAA-NXT

FFF DELETE
DELETE AAA

 CCC QU VPFX NXT-BBB
RIGHT
RIGHT
QU VERB NXT-EEE
RIGHT
RIGHT
QU VERB AAA-FFF

BBB RIGHT TO //// AAA
This operation makes two unwarranted assumptions: first, that there will never be more
than two alternatives linked by / / / / , i.e. that no word will ever be looked up according
to more than two entries in the dictionary; and second, that we will not get the unexpected
case in which, e.g., a verbal prefix finds only alternative nouns after it. But applied to the above
sentence, it would correctly delete items 21, 22, 26 and 27.

The operation would fail to make the choice required by the / / / / link at position 39.
This choice could be made by another operation, which noted that the prefix T prefers an
item with IMPF to an item with PERF, if an item with IMPF is available.

A series of operations has to be carried out to unite, or at least associate, the prefixes with
the residues which follow them. Most notably, the verbal prefixes usually change the
following residues from PERF to IMPF, and determine their persons. Noun prefixes
involving the article AL will make the nominal or adjectival residues definite, and eliminate
all indefinite or construct possibilities in their grammatical coding. The prefixes involving
the prepositions B L and K, and the copula W and conjunction F, will leave those elements
standing in the sentence as separate items. Let us take all this as done, and set out the sen-
tence again:
1. Y + NQSM VERB + IMPF + HE *BE DIVIDED
2. AL + JRAD NOUN + MASC + SING + DEF + NOM/ACC/GEN *LOCUST $S
3. ALA/ PREP *TO
4. H/WALY ADVB *APPROXIMATELY
5. MAITY NUMERAL + GEN/ACC + CSTR *TWO HUNDRED

46 A. F. R. BROWN

6. NWC NOUN + MASC + SING + (NOM/ACC/GEN + CSTR)/(NOM/GEN + INDEF)
*KIND $S

7. , COMMA *,
8. ALA CONJ *BUT
9. AN PARTICLE

10. AL + NWC NOUN + MASC + SING + DEF + NOM/ACC/GEN *KIND $S
11. ALD/Y RELPRON + MASC + SING + NOM/ACC/GEN *WHICH
12. Y + SBB VERB + IMPF + HE *CAUSE $S $D *XING
13. AL + D.RR NOUN + MASC + SING + DEF + NOM/ACC/GEN *DAMAGE $S
14. AL + JSYM ADJ + MASC + SING + DEF + NOM/ACC/GEN *GREAT
15. , COMMA *,
16. L PREP *TO
17. H PRONOUN + MASC + SING + GEN
18. CADAT NOUN+ FEM + PLUR +NOM/ACC/GEN+ INDEF/CSTR *HABIT $S
19. T + KAD VERB + IMPF + INDIC/SUBJ + SHE *BE NEAR
20. T + TS/ABH VERB + IMPF + SHE *BE SIMILAR
21. FY PREP *IN
22. AL + TWALD NOUN + MASC + SING + NOM/ACC/GEN + DEF *REPRODUCTION *S
23. W COPULA *AND
24. AL + NMW NOUN + MASC + SING+NOM/ACC/GEN + DEF *DEVELOPMENT $S

Getting this far would involve a great deal of work, much of it surprisingly detailed, but
nothing really abstruse. All we have done is to consult the dictionary, and to break up some
of the words as printed into two or more word-like logical elements. If the input language
were, say, Chinese, we would have had to carry out the opposite process of grouping typo-
graphical words into logical words.

Now the real problems begin. We have to find out, or at least guess, what the words are
doing in the sentence; how they are related. As I have said several times, the nominative,
accusative, and genitive cases are practically unmarked; but we shall do the best we can. I
shall state some ‘fairly good rules’; they work well on this sentence, and on many sentences,
but they would obviously fail too often. However, it would be an entirely reasonable
research procedure to put a set of such ‘fairly good rules’ into practice on a computer, apply
them to a few thousand sentences, and examine the output to see what the next approxima-
tion should be.

Fairly Good Rule. 1. If a noun or numeral may be construct, and is followed by a noun
that may be genitive, make the former exclusively construct in state, and the latter ex-
clusively genitive in case, and consider the former to govern the latter.

The only effect of this in the above sentence is to join MAITY to NWC; NWC loses its
possibilities of being nominative and accusative case. This rule could be coded thus:

$ OPERATION F.G.R.-1 GO TO LEFT END
BBB RIGHT TO CSTR

RIGHT
QU NOUN NXT-AAA
QU GEN NXT-AAA
DELETE ACC
DELETE NOM
GOVERNED
LEFT
GOVERNOR
DELETE DEF
DELETE INDEF BBB

AAA LEFT BBB

Automatic Translation of Languages 47

Fairly Good Rule. 2. An adjective agrees with the nearest noun to its left if it has the
same state (definite or indefinite; construct adjectives are rare). (Concord in gender and
number between nouns and adjectives is rather weak; some things are ‘forbidden’, but no
complete description of what is ‘permitted’ or ‘required’, under exactly what circumstances,
seems to exist for the modern written language. Concord in case is hardly worth considering,
since although strict in theory, it is so little apparent in practice.)

The only effect of this in the above sentence will be to join ALJSYM to ALD.RR. The
rule could be coded thus:

$ OPERATION F.G.R.-2
GO TO LEFT END

AAA RIGHT TO ADJ
CALL THIS ITEM K
QU DEF NXT-BBB
LEFT TO NOUN
QU DEF NXT-CCC

DDD MODIFIED
GO TO ITEM K
MODIFIER *AAA

CCC GO TO ITEM K AAA
BBB LEFT TO NOUN

QU INDEF DDD-CCC

Fairly Good Rule. 3. A preposition governs the nearest noun, numeral, or pronoun in the
genitive case on its right, and makes it exclusively genitive in case. This means that in the
sentence above, ALA/ governs MAITY, L governs H, FY governs ALTWALD.

The rule could be coded thus:

$ OPERATION F.G.R.-3
GO TO LEFT END

AAA RIGHT TO PREP
BBB CALL THIS ITEM K
DDD RIGHT

QU PREP BBB-NXT
QU NOUN CCC-NXT
QU NUMERAL CCC-NXT
QU PRONOUN CCC-DDD

 CCC QU GEN NXT-AAA
DELETE NOM
DELETE ACC
GOVERNED
GO TO ITEM K
GOVERNOR AAA

Fairly Good Rule. 4. An adjectival clause begins with each relative pronoun, and ends
just before the next conjunction or punctuation; it modifies the noun next preceding the
relative pronoun.

This rule would join ALD/Y YSBB ALD.RR ALJSYM to ALNWC as a modifier. It
could be coded thus:

48 A. F. R. BROWN

$ OPERATION F.G.R.-4
GO TO LEFT END

AAA RIGHT TO RELPRON
CALL THIS ITEM K

CCC RIGHT
QU PUNCT BBB-NXT
QU RELPRON BBB-NXT
QU CONJ BBB-CCC

BBB LEFT
END CLAUSE
GO TO ITEM K
BEGIN CLAUSE
MODIFIER
LEFT TO NOUN
MODIFIED
GO TO ITEM K AAA

Actually, a relative pronoun will only occur after a definite noun; an adjective clause
modifying an indefinite noun follows it immediately, with no explicit indication that a new
clause is beginning. An instance of this in the sentence above is the clause beginning with
TKAD, which modifies CADAT. (It is entirely typical of Arabic that while CADAT is
plural, TKAD logically refers to it but is singular. However, the difficulties would be much
the same even with a strict concord like that in most Indo-European languages.) The clue
to such an adjectival clause is usually that a verb follows directly after an indefinite noun.
This is neither a necessary nor a sufficient condition, but it is probably the best simple
statement of the conditions. If one can determine that there is a predicate before the in-
definite noun, the likelihood that the verb begins an adjectival clause is much greater. (The
predicate before CADAT is the prepositional phrase L H, which has to be translated
‘it has’.)

The sentence has to be divided into main clauses; conjunctions and punctuations would
serve as indications in the sample sentence, but certainly this is an inadequate rule for
general use. Within a clause, nearly every noun which is not governed by a preposition will
be either a subject or a direct object (or a predicate in a verb-less clause). The normal
word-orders are subject-verb-object and verb-subject-object, if all three elements are
present. For a clause having either a subject noun or an object noun, but not both, the normal
orders are subject-verb, verb-subject, and verb-object. The cases of nouns being virtually
unmarked, the patterns ‘verb-subject’ and ‘verb-object’ appear to be hopelessly confounded,
though the distinction between subject and object must be important for translation into
any European language. This is a problem which no amount of theoretical or mathematico-
linguistic research can do much to solve. The only thing to do is to examine as much Arabic
text as possible, and try to discern the signals which must exist in the text. Perhaps there
are no signals beyond the semantic facts—some nouns can be subjects to certain verbs,
others cannot, and so on.

In any case, the easiest way to present a large quantity of such material to a human
researcher would be to get a machine to translate a large body of text, using an inadequate
rule. In the reading of the translation, every instance of a subject wrongly called an object,
or an object wrongly called a subject, would immediately be evident to a human being, who

Automatic Translation of Languages 49

is blessed with intuition. The translation program might be modified so that no translation
at all was produced for a sentence in which the subject/object difficulty did not appear to
arise. In this way, the ‘translation’ program would be used as a device to help select the
material for the linguist to consider.

When I began to write this lecture, I knew that Arabic syntax was comparatively simple,
and that a good description was available. I had forgotten that a simple descriptive grammar
does not necessarily indicate a simple recognition procedure. An ordinary descriptive
grammar, whether it has been programmed or not, gives a system of patterns such that
nearly any sentence in the language can be fitted into one of the patterns by someone who
knows the language. A good Latin grammar provides a model for any good sentence in
Latin; a teacher can take a Latin sentence and convincingly show a student how the sen-
tence conforms to the grammar in the book. Or the grammar could be programmed and
used to generate random Latin sentences—this has been done for English by Dr. Yngve
with extremely interesting results. But in the absence of the teacher, a beginning student of
Latin would be unable to fit the sentence to a grammatical pattern; in other words to parse
it. The grammar doesn’t work this way for anyone who doesn’t know the language. A good
beginning student of Latin could use the grammar to construct grammatical Latin sentences,
but he couldn’t read a page of Cicero even with grammar and dictionary at hand.

A machine working by any algorithms we can imagine will never understand what
anything means; therefore it needs a very complicated sort of recognition grammar to
accomplish what a human being can do with conventional grammar, plus intuition and
experience. A recognition grammar will turn out to be a thousand times more complicated
than a conventional descriptive grammar. Yet this is really an illusion. Common sense tells us
that a descriptive grammar and a recognition grammar should somehow be equivalent,
and that either should be transformable to the other. So they would be, if they were both
complete. However, a fractional descriptive grammar gives an illusion of completeness and
elegance, while a fractional recognition grammar just gives bad machine output. Descriptive
linguists nowadays try to go beyond the ordinary morphological and syntactic levels, but
with little enough to show for it as yet. In the meantime, descriptive grammars, at their
best, are rigorous over a field not much wider than the field which the Arab grammarians
of the early middle ages were able to describe with rigor.

Suppose that a conventional descriptive grammar of a written language contains one
tenth of the whole truth. This tenth will be the most useful one for a human being, and the
best one to begin by learning. Now the whole truth of descriptive grammar and the whole
truth of recognition grammar are probably equivalent; but the tenth part of the recognition
grammar which is directly equivalent to the accessible tenth part of the descriptive grammar
will not take us very far. It may be that a tenth part of the total recognition grammar would
be enough for satisfactory machine translation; but it will not be the same tenth which is
produced by transforming the known tenth of descriptive grammar.

Our ignorance about every language is enormous, as soon as we are obliged to leave
behind our intuitive knowledge. Machine translation research makes this painfully clear,
while traditional linguistics allows us to forget it. The new knowledge which machine
translation demands cannot be spun out of our minds; we have to study the texts with a
new set of questions in mind. If I believe that a machine translation research effort ought to
aim at producing an algorithm within two or three years, I do not suppose that two or three
years will show tremendous progress. But to work on machine translation without producing
and testing an algorithm is like studying the synthesis of proteins without trying to syn-

50 A. F. R. BROWN

thesize some proteins. You may think that the knowledge gained by analysing proteins will
be enough to keep you on the right track, but the chances are that you will be drifting
farther and farther away from it.

4. MACHINE SYNTHESIS OF ENGLISH OUTPUT
For the sake of neatness, I said that my third lecture would be about machine analysis

of Arabic, and my fourth would be about machine synthesis of English. This is an absurdly
disproportionate division of time. By quibbling, one can say that machine translation
consists entirely of the analysis of the input language, or that it consists entirely of the syn-
thesis of the output language. But as we normally use the term, the synthesis of the output
language is what happens after we have done all the analysis we can—morphological,
syntactic, and perhaps semantic—on the input language. Assuming the output language to
be English, the synthesis involves the re-arrangement of the items of the sentence into an
English order, the inflection of English stems that were originally brought from the dic-
tionary, the insertion and suppression of articles, the choice of English equivalents for
polysemic words, especially prepositions, and the choice of English expressions for what the
input language expresses by inflectional elements.

Let me suppose that the analysis of my sample Arabic sentence is complete as to syntax;
in other words that I have succeeded in parsing it completely. It will now look something
like this:
1. YNQSM VERB + IMPF + INDIC + HE VS VP *BE DIVIDED
2. ALJRAD NOUN + MASC + SING + NOM + DEF VS VP *LOCUST $S
3. ALA/ PREP VP PN *TO
4. H/WALY ADVB PN *APPROXIMATELY
5. MAITY NUMERAL + GEN + CSTR PN NN *TWO HUNDRED
6. NWC NOUN + MASC + SING + GEN + INDEF NN *KIND $S
7. , COMMA*,
8. ALA CONJ *BUT
9. AN PARTICLE TS

10. ALNWC NOUN + MASC + SING + ACC + DEF TS AN RR *KIND $S
11. ALD/Y RELPRON + MASC + SING + ACC AN RR RR *WHICH
 ((((((((((((((((((((((((
12. YSBB VERB + IMPF + INDIC + HE VO RR RR *CAUSE $S $D $XING
13. ALD.RR NOUN + MASC + SING + ACC + DEF VO RR AN *DAMAGE $S
14. ALJSYM ADJ + MASC + SING + ACC + DEF RR AN *GREAT
15. , COMMA))))))))))))))))))))))) *,
16. L PREP PN RR *TO
17. H PRONOUN + MASC + SING + GEN PN RR
18. CADAT NOUN + FEM + PLUR + NOM + INDEF RR *HABIT $S

19. TKAD VERB + IMPF + INDIC + SHE RR VV *BE NEAR
20. TTS/ABH VERB + IMPF + INDIC + SHE VP VV *BE SIMILAR
21. FY PREP VP PN *IN
22. ALTWALD NOUN + MASC + SING + GEN + DEF PN *REPRODUCTION $S
23. W COPULA PN *AND
24. ALNMW NOUN + MASC + SING + GEN + DEF PN *DEVELOPMENT $S

))))))))))))))))))))))

The parentheses enclose subordinate clauses, while the line of dashes indicates a com-
plete syntactic cut. The columns of letters in the middle of the page are supposed to represent
binary relations as follows:

VS verb to following subject
VP verb to preposition semantically important to it (e.g. ‘are divided into’)
PN preposition to noun it governs
NN noun or numeral to noun it governs
TS subject-introducing particle to subject
AN noun to adjective or relative pronoun modifying it
RR antecedent noun to a later pronoun which refers to it (which pronoun may be the

implicit subject contained by a verb)
VO verb to direct object
W verb to a following verb in the imperfect indicative or subjunctive which it ‘governs’

Automatic Translation of Languages 51

Here is a simple operation for shifting subjects that follow their verbs into positions
ahead of the verbs:

$ OPERATION SUBJECT-INVERSION

GO TO LEFT END
AAA RIGHT TO VERB

QU VS NXT-AAA
SLIDE ON VS
LEFT END FOR SHIFT
QU AN NXT-BBB
SLIDE ON AN
QU RELPRON NXT-BBB
RIGHT TO))))))

BBB RIGHT END FOR SHIFT
LEFT TO VERB
LEFT
SHIFT TO RIGHT OF THIS ITEM
RIGHT TO VERB AAA

Here is a simple operation for pluralizing English nouns whose Arabic originals either
are plural or follow numerals; adding ‘THE’ before nouns if their Arabic originals were
definite; and adding ‘OF’ before them if they are governed by other nouns:

$ OPERATION NOUN-SYNTHESIS

GO TO LEFT END
AAA RIGHT TO NOUN NXT-BBB

QU DEF NXT-AAA
LEFT ADD ENG ((THE)) AAA

BBB GO TO LEFT END
CCC RIGHT TO NOUN

QU PLUR NXT-DDD
ADD -S

DDD QU BOTTOM OF NN NXT-CCC
SLIDE ON NN
QU NUMERAL NXT-EEE
SLIDE ON NN
ADD -S CCC

EEE SLIDE ON NN
LEFT ADD ENG ((OF)) CCC

But as the adjectives in Arabic normally follow their nouns, we must first have moved
them ahead of their nouns. Let us assume that whenever a noun is followed by more than
one adjective, the adjectives are to keep the same mutual order after they have been moved
ahead of the noun. Then this operation will do it:

52 A. F. R. BROWN

$ OPERATION ADJECTIVE-REVERSAL

GO TO LEFT END
AAA RIGHT TO NOUN

QU AN NXT-AAA
SLIDE ON AN
QU ADJ NXT-AAA
RIGHT
FLAG

BBB LEFT
QU NOUN AAA-NXT
DELETE
LEFT TO NOUN
LEFT ADD DELETED ENG
RIGHT TO FLAG BBB

I shall not attempt to show a routine for inflecting English verbs. Since there are only
two tenses in Arabic (as in Russian—but a more accurate comparison would be to say that
each of the Arabic tenses corresponds to one member of a perfective-imperfective pair of
Russian verbs) it is obvious that what we translate into English tenses will involve auxiliary
verbs and particles in Arabic. Negation of an English verb is mixed up with inflection, so
negation and tense inflection would have to be handled together. Furthermore, the gram-
matical number of an English verb will often have to be made plural even when it translates
an Arabic singular verb.

However, let me look in particular at the verb phrase TKAD TTS/ABH. This will have
to be translated ‘which are nearly similar’, but I would like to consider only the transition
from *BE NEAR *BE SIMILAR to *BE NEARLY SIMILAR. This is an operation
peculiar to the verb KAD, so I want to code it in this verb’s dictionary entry or entries, and
keep it out of the list of operations of general usefulness. The verb has three stems, of which
two happen to coincide: KAD for hollow perfect tense forms, KAD for hollow imperfect
tense forms, and KD for non-hollow forms. Here is how the dictionary entry for the first
of these stems might be coded:

KAD = P131 VERB *BE NEAR
- LOCAL OPERATION, PRIORITY 800
- Q U V V
- SLIDE ON VV
- QU FIRST ENGLISH ((BE)) AAA-NXT
- DELETE ENGLISH
- SLIDE ON VV
- REPLACE ENGLISH BY DELETED ENGLISH
- LEFT ADD ENG ((NEARLY)) STOP
- AAA DELETE FIRST ENGLISH
- DELETE ENGLISH
- SLIDE ON VV
- REPLACE ENGLISH BY DELETED ENGLISH
- LEFT ADD ENG ((BE NEARLY)) STOP

Automatic Translation of Languages S3

Here I have suggested how a dictionary entry can contain a piece of program. Note that to
this ‘local operation’ a priority of 800 has been assigned. So far I have said nothing about
how the linguist is to ensure that the operations involved in the translation process are
performed in the order he wants. A flexible method for sequencing operations is to assign
to each one a priority number within a fixed range, say 1 to 999. Then all the operations
called for by a sentence will be executed in order of increasing priority number.

It is obvious how and when a ‘local operation’ like the one above will be brought into
play. What about the operations that have to be carried out on every sentence? The follow-
ing device has several advantages of convenience: Let every sentence in the input text be
considered to begin with an extra word at its left-hand end, ‘DUMMY’. Though this word
is not really in the sentence, an item corresponding to it can be used to contain information
about the sentence as a whole, and as a sentinel to mark the left-hand end of the sentence
(it can also mark the right-hand end, if the sentence is laid out as a simple ring-shaped list).
We are then allowed to have an entry in the dictionary for DUMMY, and this entry may
contain instructions calling on all those operations which are to be used on every sentence:

DUMMY XXX XXX
- INSTRUCTION OPERATION ((++CHOICE)) PRIORITY 50
- INSTRUCTION OPERATION ((PREFIX-CHOICES)) PRIORITY 60
- INSTRUCTION OPERATION ((F.G.R.-l)) PRIORITY 100

and so on.
If a dictionary entry can call on an operation in this way, we can arrange for an opera-

tion to be called on not for every sentence, but only for sentences containing certain words.
For instance, there may be a class of verbs in Arabic which are almost always followed by
the preposition CLA/. It is worth recognizing the connection between such verbs and CLA/,
in order to help account for the preposition. So we may code an operation to do this, call
it OPERATION VERB-CLA/, and then put an instruction like the following into the
dictionary entry for every such verb:

- INSTRUCTION OPERATION ((VERB-CLA/)) PRIORITY 300

Further, consider that after some verbs, CLA/ will be translated ‘on’, after others ‘to’,
after others ‘from’, and so on. One might allow an instruction to include not only the name
of an operation and a priority number, but also, optionally, one or more English words
which the named operation could use if necessary. Then the dictionary entry for one of
these verbs might contain

- INSTRUCTION OPERATION ((VERB-CLA/)) PRIORITY 300 *TO

the entry for another might contain

- INSTRUCTION OPERATION ((VERB-CLA/)) PRIORITY 300 *FROM

and so on.
The imaginary coding language which I have used in all these examples may not seem

very attractive to linguists as a vehicle for expressing their ideas on machine translation.
Partly this is due to incidental features, but partly it is due to the initial obscurity of any-
thing that looks like computer programming. However, any linguist who wants to work
seriously in the field has to face the problem of communicating with the programmers.
One way of communicating is by verbal statements, but these will soon begin to resemble

54 A. F. R. BROWN

statutes on taxation and inheritance—and instead of giving employment to generations
of lawyers, these linguistic statements will only give headaches to programmers and lin-
guists. Or the linguist can make flow-charts. But flow-charts are not as straightforward as
they look, and the linguists will have to train themselves to be rigorous, and work for months
with the programmers before all the necessary understandings are reached. Furthermore,
the programmers cannot write a program that will implement flow-charts directly. In the
long run, it is best for the linguists, or at least some of them, to invest their time in learning
to express themselves in a language of rigid procedural statements, and for the programmers
to invest their time in the complex programming needed to implement these statements.

