
[International Conference on Machine Translation of Languages and Applied Language Analysis, National Physical
Laboratory, Teddington, UK, 5-8 September 1961]

SYNTAX IN UNIVERSAL TRANSLATION
by

ITIROO SAKAI
(The First Research Centre of the

Defence Agency, 13, Mita, Meguro, Tokyo, Japan.)

1. INTRODUCTION.

EXPERIMENT is now underway on sentence to sentence translation from any
language into any desired language. The machine used is a general pur-
pose ferrite core parametron computer with magnetic core internal storage
A magnetic drum and three magnetic tape handlers are provided as exter-
nal storage media. A logical algebra has been introduced for analyzing
and synthesizing text, so that the procedure be applicable to any lang-
uage of any syntactical nature. The reference data of grammar are a set
of fundamental rules prepared in a definite form, which are superposed
digit by digit onto the text. The translation is carried out via machine
language, a decoded version of the input text.

2. SEMANTIC UNIT, su.

Any symbol sequence shall be called a semantic unit or su. An su
is a product of two su-s, if it can be split into two su-s, su' and su",
so that the meaning and the syntactic function be derived from those of
su' and su". We will express the relation by writing su = su' & su".
The Symbol "&" is omitted whenever its meaning is clearly understood.

An su is an elementary semantic unit or esu, if it can no longer
be split into shorter su-s or its meaning and syntactic function can-
not be derived from its shorter components. Practically, the entries
of an input dictionary are esu-s.

3. PART OF SPEECH, ps.

All the su-s have their own syntactic functions, which we will
call parts of speech, or ps. The ps of an su, ps(su), for our oper-
ational purpose are defined so as to meet the following requirements.

(1) ps(su) = 0, if the su is not meaningful.

(2) ps(su') = ps(su") with context C, if both su' and su" display a
syntactically identical role with respect to C.

(3) ps(su') = ps(su") with context set S, if ps(su') = ps(su") with
all the contexts that are members of the set S.

(4) ps(su') = ps(su"), if ps(su') = ps(su") with S and if S contains
all the contexts to be handled.

(98026) 594

(5) ps(su) = ps(su') + ps(su") with context set S, if a set S = S' + S"
exists, such that

ps(su) = ps(su') with S',
ps(su) = ps(su") with S".

(6) ps(su) = ps(su') + ps(su"), if ps(su) = ps(su') + ps(su") with S and
if S contains all the contexts to be handled.

(7) ps(su') E ps(su), if real or imaginary su" exists, such that ps(su)
= ps(su') + ps(su").

(8) ps(su) = ps(su') & ps(su"), if su = su(l) & su(2), ps(su') = ps(su(l)),
ps(su") = ps(su(2)).

The symbol "&" is omitted whenever its meaning is clearly under-
stood.

4. OPERATION RULES.

The su-s of a language can be classified after their ps-s. Let
x, y, z, - - - be the variables representing ps-s. Their operation rules
are assumed as follows.

(1) x + y = y + x

(2) x + 0 = 0 + x = x,

(3) x + x = x,

(4) (x + y) + z = x + (y + z) = x + y + z,

(5) xy  yx,

(6) x & 0 = 0 & x = 0,

(7) (x + y)z = xz + yz,

(8) x(y + z) = xy + xz,

(9) (xy)z  x(yz),
(10) xyz = (xy)z + x(yz),

(qq) y = x/u/z if u = xyz,
y = x/u/ if u = xy,
y = /u/z if u = yz.

5. ELEMENTARY PART OF SPEECH, eps.

A ps, x, is sometimes differentiated by its contexts into a sum
of component ps-s. A component ps can or cannot be further differ-
entiated. If possible, repeat the procedure in a similar way. We
shall have a ps expanded in the form x = e(l) + e(2) + - - - +e(r)='e(1)

(98026) 595

where e(i)-s are ps-s that can no longer be differentiated. They shall be
called elementary parts of speech or eps-s. Take all the su-s in the in-
put dictionary and expand their ps-s into eps-s. Let S be the set of all
the eps-s thus obtained and let e(i) and e(j) be arbitrary eps-s of the set.
The product e(i)e(j) is also a ps and can be expanded into eps-s. If a
new kind of eps appears, it is added to the set S. Repeat the procedure
until at last no more new kind of eps is obtained. The process is infinite,
because otherwise the language itself will be of little practical use. The
set thus obtained is the complete eps set of the language. The number of
different eps-s in the complete set is determined by the language and the
required quality of translation.

6. EXPANSION COEFFICIENT.

6.1. Let us consider a set of coefficients x(i), such that x = 'u(i)
= x(i)u(i), where x(i) = 1 is u(i) E x,

 x(i) = 0 if otherwise.
If the set u(i) is the complete eps set of the language, any ps is repre-
sented by x = 'e(i)= x(i)e(i).

6.2 Put x = x(i)e(i), y = y(j)e(j), z = z(k)e(k), and we have the
following properties.

(1) If x + y = z, then x E z, y E z.
If e(i) E x, then x(i) = 1, e(i) E z;
if e(j) Ey, then y(j) = 1, e(j) Ez.
Therefore, by writing x(i) + y(j) = z(k), we have
0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1.

(2) If xy = z, then z = x(i)e(i) & y(j)e(j),
 = z(i,j)e(i)e(j).

e(i)e(j) E z, if and only if e(i) E x and e(j) E y.
Therefore, the expression x(i)y(j)= z(i,j), we have 0 x 0 = 0 x 1 =
1 x 0 = 0, 1 x 1 = 1.

(3) Expand the product in the form e(i)e(j) = a(i,j,k),e(k).
Writing z = xy =z(i,j)a(i,j,k)e(k) = z(k)e(k), we have e(k) E z,
if and only if e(i)e(j) Ez,

 e(k) E e(i)e(j).
Therefore, in the expression z(i,j)a(i,j,k) = z(k), we have
0 x 0 = 0 x l = l x 0 = 0, 1 x 1 = 1.

6.3. The results above and the operation rules show that the product of any
two ps-s are given by combining eps operations and that the grammatical rules
may be prepared as a table of eps products. Applicable products are se-
lected in reference to the expansion coefficients of the given ps-s.
Thanks to the Boolean properties of the coefficients, we can imagine a ps
product device in the form of a matrix. Each row corresponds to an eps and
so does each column. The incoming ps, x, actuates some of the rows accor-
ding to its expansion coefficients x(i) and y does similarly the column
according to y(j). The cross point of the i-th row and the j-th column
corresponds to x(i,j) which is 1 if and only if x(i) = y(j) = 1. The

(98026) 596

actuated cross points immediately call, up the ps code of e(i)e(j) in
terms of their expansion coefficients a(i,j,k).

7. SYNTACTICAL STRUCTURE AND ITS TRANSFORMATION.

7.1. The syntactical structure of input text is determined by making all
the possible combinations of su-s. The longest meaningful su thus ob-
tained is the valid longest su, a product of two component su-s. If a
component su is not an esu, it is again a product of two components.
These su-s are really components of the longest meaningful su, and shall
be called "valid su-s". The other su-s, that have been formed in the
course of analysis, are "invalid" in the light of their context. The ps-s
of these su-s are peculiar to the input language, and shall be called in-
put parts of speech or ips. The ips combination u & v = w has its counterpart
u' & v' = w' expressed in terms of machine language parts of speech or
mps. The correspondence is given in the entries of input product table
or ipt.

A proposition in our machine language has names and a verb. The
names represent the participants and their relation is given by the verb.
Any part of a proposition may have its modifier.

The mps-s of valid su-s are determined by looking up ipt again,
picking up applicable entries in reference to their ips parts. The ipt
carries marks of word order, which is 1 if the word order is transposed,
and 0 otherwise. The text in machine language is then transformed into
input language in a similar way. The opt, output product table, has
also two parts, the one in machine language parts of speech and the
other in output parts of speech or ops.

7.2. The structure transformation is illustrated by a simple example.
It is in Japanese pronounced as if it is written in the international
phonetic alphabet. The input text "joi hon' o jome" is dissolved into
esu-s and numbered as

jo - i hon' o jom - e .
(1) 2) (3) (4) (5) (6)

The input dictionary gives their meanings in machine codes as well as
their ps-s.

ps(l) = ps(jo.) = adjectival stem = adj-st,
ps(2) = ps(-i) = suffix to adj-st, yielding (/n/n) or an

 adjectival predicate
 = adj-st/ (/n/n) + p/.
ps (3) = ps (hon') = noun = n,
ps(4) = ps(o) = bond representing the role of participant(s)

/ it follows
 = b,

ps(5) = ps(jom-) = verbal stem = v-st,
ps(6) = ps(-e) = suffix to v-st, yielding a verbal predicate

 = v-st/p/.

(98026) 597

TABLE 1.

Simplified Eps Product Table,
Japanese.

 : n p b x
--:--------
n : n 0 x 0
 :
p : 0 0 x 0
 :
b : 0 0 0 0
 :
x : 0 p x 0

TABLE 2.

Possible Su-s in ((12)(56)).

(12) (13) (14) (16)
(33) (34) (36)

(44) (46)
(56)

Referring to Table 1, the ps-s of all the possible su-s in Table 2 are
obtained.

ps(l2) = adj-st & adj-st/(/n/n) + p/ = /n/n + p,
ps(56) = v-st & v-st/p/ = p,
ps(13) = ps(12) & ps(33) = ((/n/n) + p)n = n,
ps(34) = ps(33) & ps(44) = nb = x,
ps(46) = ps(44) & ps(56) = bp = 0,
ps(14) = ps(12)& ps(34) + ps(13) & ps(44)

 = ((/n/n) + p)x + nb = 0 + nb = x,
ps(36) = ps(33) & ps(46) + ps(34) & ps (56) = 0 + xp = p,
ps(16) = ps (12)& ps (36)+ ps (13)& ps (46) + ps (14) & ps (56)

= ((/n/n) + p)p + 0 + xp = 0 + 0 + p=p.

The decoded form is obtained by the following operations.

ps(16) = p = xp = ps((14) (56)),
ps(14) = x = ps((13)(44)),
ps(13) = n =(/n/n)n = ps((12) (33)),
ps(12) = (/n/n) = (adj-st)(adj-st/(/n/n)/) = ps((11)(22)),
ps(11) = adj-st,
ps(22) = adj-st/(/n/n)/,
ps(33) = n,
ps(44) = b,
ps(56) = p = (v-st)(v-st/p/) = ps((55)(66)),
ps(55) = v-st,

(98026) 598

ps(66) = v-st/p/).
It will be encoded into machine language.
(16) = verb(56) & participant(14),
(14) = bond(44) & substantive(13),
(13) = substantive(33) & modifier(12)

Referring to the output dictionary, from machine language into English for
example, we have, since the modifier (12) corresponds to an English adjec-
tive of one word, the word order is (13) = ((12)(33)). The bond (44)
means that the substantive (13) is a direct object of a predicate. The
output product table gives the order (14) = ((44)(13)) and the output dic-
tionary tells that it is represented by a space. The participant (14),
being accusative by (44), follows (56), which is imperative by (66). Now,
all put in English word order, (16) = ((56) (14)) =((56)((44)((12)(33)))).
Replacing semantic machine codes by English words,
(16) = read () good book(s).

8. REPRESENTATION AND APPLICATION OF SYNTACTICAL RULES

8.1. Most languages have detailed varieties of eps-s. An eps product
table will include a tremendous number of entries if all the eps varie-
ties are considered independent. Fortunately, they are classified into
a handful of groups and the eps-s in a group are subclassified from vari-
ous points of view, most of them being independent of each other.

An eps is represented by a series of figures. They are independent
of each other. The figure 0 means that the viewpoint of this digit is of
no concern. It is considered equal to any figure, if one digit is not
enough for one point of view, two or more figures are combined: 00, 11,
12, 13, - - -, 21, 22, - - -, for example. When two representations are
equal in the sense that the figure 0 is equal to all, they are in "agree-
ment".

8.2. An elementary rule of grammar is given by an entry of eps product
table in the form of a product. If the product is ambiguous as shown
by u & v = w' + w", we establish two entries for w' and w".

TABLE 3.

Eps Product Table, schematized.

u : v : w : s : ord

1120 : 300700020 : 350100020 : 2 : 1

1120 : 300700020 : 350200020 : 2 : 1

8.3. Let us see an example of product operation. When a product

b & c = d is wanted, with b = 1020 and c = 311721220 given, the pro-
duct is indefinite before the operation: d = 000000000. By looking
up the product table, the entries of Table 3 are found to agree. The
result (3) in Table 4 is determined digit by digit.

(98026) 599

TABLE 4.

Ps Operation on Product Table

(1) : b & c  ? : 1020 311721220 000000000

(2) : u & v = w : 1120 300700020 350100020

(3) : b & c = d': 1120 311721220 350100020

A digit in (3) is equal to the corresponding digit in (2) if it is
not a zero. If it is, the digit in (3) is equal to the corresponding
digit of (1). The zeroes in the intermediate result d' are put equal to
the corresponding digits of c when the value of s in the product table is
2. The application of the rule gives, as illustrated in Table 5, the
result b = 1120, c = 311721220, d = 351121220, where the case of b is
found nominative, which was indefinite 1020. The number of subject

 TABLE 5

Transfer of Text Information

c : 311721220

d': 350100020

d : 351121220

still remains indefinite as indicated by the final 0 of b and d, which is
to be determined by another entry of the table if an appropriate one is
found available. The lower entry of Table 3 is also in agreement in our
present case. The procedure gives the result d - 351221220, another
possibility of being "subjunctive".

9. REFERENCE DATA FOR TRANSLATION.

9.1 Input Dictionary, id. An entry of input dictionary has three parts:
sp, sc and ips. Sp means spell in alphabetical notation. Sc is a
numerical code for semantic specification of the entry. Ips is the
part of speech in terms of the input language. A multiple meaning word
is represented by as many entries. An entry that is the left half of an
idiom has its ips "idiom'" and the right half "idiom"". The sc-s in
these cases have no definite meanings but specifying an idiom.

9.2 Input Idiom Dictionary, idid. The idiom dictionary is identical
to id in its structure except that sp is substituted by a couple of
sc-s whose ips-s are idiom' and idiom". If an idiom is not yet com-
pleted, the ips of the entry is again idiom'. The two sc-s are
shortened into a new sc.

(98026) 600

9.3 Input Product Table, ipt. The table consists of three parts. The
first is the input part u & v = w, the second is the corresponding mach-
ine language part u' & v' = w’ in terms of mps-s, and the third contains
s and ord. If s is 0, no operation is made. If it is not 0, the oper-
ation runs as illustrated in Table 5. Similar operation is made with
mps part, but usually in the reverse direction. See Table 8.

9.1 Ouptut Dictionary, od. The output dictionary is indexed by sc and
mps. The information provided is ops and output spell. Ops is the
part of speech in output language and the spell is given in terms of its
location and its length. The entries are selected by coincidence of
sc and agreement of mps. See Table 10.

9.4 Output Product Table, opt. Opt is a syntax transformation table
from machine to output language. The mps part indicates the product
u' & v' = w' and the output part gives the corresponding product in
output language. Symbols to be inserted in the output language, bonds
or word endings for example, are given before and after component ops-s
u and v: ub before u, ub' after u, vb before v, vb' after v. The
functions of s and ord' are similar to those of s and ord in ipt. See
Table 9.

10. INTERMEDIATE DATA DURING TRANSLATION PROCESS.

10.1. The su storage, a magnetic drum of 24 x 20480 bits, is used to
store all the intermediate data during the process. Its structure is
roughly shown in Table 13, where a simple English text is translated
into Japanese. The ps-s are in conventional notation for easier
illustration. The table is modified so that the general method be
understood at one glance. Practically, the spaces for analysis and
synthesis are separated and the entries in the synthesis part carry
the locations of corresponding entries of analysis. Sometimes, an
entry of analysis corresponds to a few output counterparts. Proper
output is chosen in virtue of syntactic and semantic indices in the
ops.

10.2 An entry of su storage consists of the following sections. Brief
interpretations are provided.

d: The entry number, represented by the location.
esu: If the entry is an esu, the value is 1; otherwise 0.
sc: If the entry is an esu, sc means semantic code. If not, the

space is used for b and c, the entry location of the component
su-s.

scd: Modifies the meaning of sc. If scd is 1, the sc is really an
sc; if scd is 0, the sc means the location and length of in-
put spell that was not found in id.

b,c; If the entry is a product of two su-s, the components are
stored in the locations indicated by b and c.

h,k: The input order number of the esu-s standing at the beginning
 and the end of su. The su represented by the entry is a se-
 quence of esu-s, from the h-th to the k-th.

(98026) 601

ips: input part of speech given by id and ipt.
mps: Machine language part of speech out of ipt.
ops: Output part of speech given by od and opt.
ord, ord': If the input word order is interchanged in machine language,

the ord is l, otherwise 0. Similarly, ord' is 1 or 0 according
to the word order of machine and output languages.

val: If the entry is valid as an su of the longest valid su, it stores
1; if not 0. In synthesizing an output, figures 1 or 2 are added
to the right end in a series. The series, when normalized to the
left end, means the output word order.

sp: Location and length of output spell.
bc: Location and length of output spell to be inserted before sp.
bc': Location and length of output spell to be inserted after sp.

10.3 The contents of bc, sp and bc' of valid su-s are brought to the out-
put storage. An entry of output storage has two cells, seq and sp. Seq
is equal to val in the su storage with 1, 2 or 3 added to the right end
to indicate that the entry is bc, sp or bc'. The output word order is
determined by seq. The example in Table 14 has an increased ambiguity
for "solution" because of the modified presentation of su storage in
Table 13.

(98026) 602

TABLE 6.

We see that the solution is unique.
1 2 3 4 5 6 7

Possible su - s

 (11) (12) (13) (14) (15) (16) (17)
 (22) (23) (24) (25) (26) (27)
 (33) (34) (35) (36) (37)
 (44) (45) (46) (47)
 (55) (56) (57)
 (66) (67)
 (77)

expansion

(25) = (22)(35) + (23)(45) + (24)(55)

(h,k) = (h,i)(j,k)

h  1, 1 + 1 = j  k

TABLE 7.

 input dictionary
spell sc ips

is 007 v(l)
is 007 v(4)
see 789 inf(l)
see 789 inf(2)
see 789 v(l)
see 789 v(2)
solution 83 n
that 8951 pn
that 8952 adj(pron)
that 8953 /n/s
that 8954 /(n/n/)/s
that 8955 /(n/n/)/v(l)
the 896 art
unique 93 adj
we 97 pn(l)

(98026) 603

TABLE 8.

input product table

u v w s u' v' w' ord

 a-n v(l) s 2 n(l) v s 1
art n a-n 2 n/n n n 1
inf(2) n inf(l) 1 v n(4) v 0
n v(l) s 2 n(l) v s 1
/n/s s n 0 n/s s n 0
/(n/n/)/s s n/n/ 0 (n/n)/s s n/n 0
/(n/n/)/v(l) v(1) n/n/ 0 (n/n)/v v n/n 0
pn(l) v(l) s 2 n(l) v s 1
v(2) n v(l) 1 v n(4) v 0
v(4) adj v(l) 1 v v/v v 0

TABLE 9.

output product table

u' v' w' ub u ub' vb v vb' w s ord'

n(1) n/n n(l) n /n/n n 1 1
n/s s n(4) n/p p(4) 1408(1) n 1 1
v n(l) s p(4) 1425(1) n 1401(2) p(4) 1 1
v n(4) v p(k-l) n 1409(1) p(k-l) l l
v v/v v p(4) n 1420(1) p(4) 1 1
v n(l) s p(k-l) 1415(1) pn 1401(2) p(k-l) l l

TABLE 10.

output dictionary

 spell
sc mps ops address (length)

007 v p(4) 1153 (1)
789 v p(k-l) 1176 (1)
83 n n 1187 (7)
8951 pn pn 1198 (1)
8952 n/n adj(0) 1199 (1)
8953 n/s n/s 2000 (1)
896 n/n adj(0) 1201 (1)
93 v/v n 1206 (3)
97 n(l) pn 1237 (2)

(98026) 604

TABLE 11.

 output spell
 address spell

1153 ar
1176 mi
1187 kota
1188 e/jo
1189 okai
1190 /joo
1191 eki/
1192 kaiz
1193 jo
1198 are.
1199 ano
1201 sono
1206 tada
1207 hito
1208 tsu
1237 ware
1238 ware
1401 ga/w
1402 a
1408 koto
1409 o
1415 ru
1420 de
1425 u

2000 xxxx

TABLE 12.

Structure of the Valid Su.

TABLE 14.

Output

seq 112 113 1211112 1211122 121113
sp 1237(2) 1401(2) 1201(1) 1188(7) 1401(2)

wareware ga sono kotae ga
 wa jookai wa
 jooeki
 kaizjo

seq 1211212 1211213 1211222 121123 12113
sp 1206(3) 1420(1) 1153(1) 1425(1) 1408(1)
 tadahitotsu de ar u koto

seq 12122 1213 1222 123
sp 2000(1) 1409(1) 1176(1) 1415(1)
 xxxx o mi ru

11. CONCLUSION

A common program for translating any language into any desired
language has been developed by means of a sort of logical algebra. The
method is universal including languages of greatly diverse syntax.
Only fundamental rules are to be prepared and the applicable ones are
chosen by digitwise agreement to be superposed onto the text. The pro-
perties of a language are programmed in an interpretive way, which can
be revised easily whenever necessary.

ACKNOWLEDGMENT

The author appreciates the effort of the members of our centre
N. Oobajasi, S. Nagahama and T. Kurasita, who devoted themselves to the
verification of procedure.

(98026) 607

APPENDIX

Abbreviations

 eps: elementary part of speech

esu: elementary semantic unit

id: input dictionary

idid: input idiom dictionary

 ips: input part of speech

ipt: input product table

 mps: part of speech in machine language

od: output dictionary

 ops: output part of speech

 opt: output product table

ps: part of speech

sc: semantic code

sp: spell

su: semantic unit.

(98026) 608

