
[International Conference on Machine Translation of Languages and Applied Language Analysis, National Physical
Laboratory, Teddington, UK, 5-8 September 1961]

ANALYSIS BY SYNTHESIS OF SENTENCES OF

NATURAL LANGUAGES*

by

G. H. MATTHEWS
(Centre for Communication Sciences

R.L.E.
Massachusetts Institute of Technology)

IN several previous papers, I have described a mechanical fail-safe
sentence-recognition routine that, in principle, cannot fail to give all
and only the possible syntactic analyses for any string of symbols with
respect to a given grammar. The first part of this paper offers a slightly
more precise formulation of this recognition routine. In the second part
of this paper I describe some subroutines that make possible a practical
analysis-by-synthesis computer programme. In the last part I discuss
some advantages of this type of recognition routine over others that have
been proposed.

The analysis by synthesis of sentences is based upon the structural
properties of grammars of natural languages. A grammar consists of a
finite, though rather large, set of sentence-formation rules, i.e.,
grammatical rules. These rules provide for a denumerably infinite set of
sentences, all of which draw their symbols from a single finite source,
i.e., vocabulary. There are two kinds of vocabulary: Nonterminal vocabu-
lary is found only in intermediate strings which occur during the deri-
vation of a sentence. Only terminal vocabulary is found in sentences.
(The term "string" refers to any sequence of terminal and/or nonter-
minal vocabulary, including sentences.)

Another characteristic of grammars is that the grammatical rules are
applied in a given linear order, and each rule transforms that string
which is the result of all previous rules in the ordering. A rule con-
sists of a finite set of subrules, one of which is applied at each
application of the rule. The set of subrules that has been applied in
the derivation of a string is essentially the syntactic structure of

* This work was supported in part by the National Science Foundation, and in
part by the U.S. Array (Signal .Corps), the U.S. Air Force (Office of Scien-
tific Research, Air Research and Development Command), and the U.S. Navy
(Office of Naval Research).

(98026) 532

that string. For a rule to be applicable to a string, the string must be
analyzed in terms of its structure in a way specified by the rule. If
the rule is applicable, the string is transformed into another string
in a way specified by one of the subrules. No rule can be applied if it
is not applicable, and every rule is applied only at its place in the
ordering. There are two kinds of rules. Optional rules do not need to
be applied even though they may be applicable. Obligatory rules must be
applied if they are applicable. All rules are recursive, that is, they may
be reapplied any number of times as long as they are applicable, and, if
they are obligatory, they must be reapplied until they are no longer
applicable. There is no chance that, in any given case, there will not be
a limit to the number of times that some obligatory rule is applicable.
The rules of a grammar can be formulated in such a way that every possible
combination of subrules conforming to the restrictions just described pro-
duces a different sentence of the language. Since there is no limit to the
number of times that some of the optional rules may be applied in the pro-
duction of sentences, there is no limit to the number of sentences of a
natural language.

Each time a given rule is applied in the derivation of a sentence, a
different one of its subrules can be used. For each rule of the grammar
we order all possible permutations, with repetitions, of its subrules in
such a way that, for any m, all permutations of m subrules precede all
those of m + 1 subrules. And for each rule we map these permutations onto
the integers. Consider the set of base-infinity numbers, all of which
have n places, r1 r2 ... rn, where n is the number of rules of some
grammar. We associate with each place rk the k

th rule in the ordering of
the grammatical rules, and we associate with each integer in place rk
that permutation of subrules of rule k that was mapped onto that in-
teger as we have just described. There is now a one-to-one correspondence
between the numbers r1 r2 ... rn and the possible permutations of all of
the subrules of the grammar, whether they are applicable or not. And
among these permutations there will be those that produce the sentences
of the language. Thus, the sentences of a natural language are denumer-
able. The types of permutations that correspond to some of the numbers
r1 r2 ... rn and do not produce sentences, are those that produce strings
of the language containing nonterminal vocabulary (we shall call these
"nonterminated" derivations), and those that indicate that some rule
which is not applicable is to be applied (we shall call these "blocked"
derivations). Hereafter, I shall refer to the number that corresponds to
a particular derivation as the "specifier" of that derivation.

We shall now make a closer examination of grammatical rules. All sub-
rules have the effect of replacing a string of symbols by another non-
identical string of symbols, i.e., the string A1 A2 ... An is replaced by

(98026) 533

B1 B2 ... Bm, where both n and m are greater than 0, and n # m and/or, for
some k, Ak  Bk. For most subrules of grammars n  m, but for a relatively
small number of subrules (to which I shall refer as ellipsis rules), n = m
+ 1. Each ellipsis rule deletes a single symbol when that symbol occurs in
a specific environment, and changes that environment in such a way that it
cannot be acted upon either as the deletable symbol or as the governing
environment of any ellipsis rule.
 Thus, in general, the number of symbols in a string increases with the
number of subrules applied in its derivation. These restrictions on the
application of the ellipsis rules makes it possible to define two functions:
Given the number of symbols p in a string, we can calculate the largest
number of rule applications m(p) from which a string of p symbols can be
derived; and we can also calculate the number of symbols f(p) in the
longest possible intermediate string of this string's derivation.

We now order the numbers r1 r2 ... rn, i.e., the specifiers, in such a
way that, for any m, all numbers the sum of whose places is equal to m
precede all those for which this sum equals m + 1. We shall refer to this
sum as the "specifier-sum". Specifiers with the same specifier-sum are
ordered numerically. If we now assign the same order to the derivations
that correspond to these numbers, it means that derivations containing
a smaller number of rule applications will, in general precede those con-
taining a larger number of rule applications. In fact, it is possible to
define a function such that given the number of rule applications a, we
can calculate the largest specifier-sum s(a) such that some derivation
whose specifier has that specifier-sum contains a rule applications. We
can now define a procedure by which, given any string of symbols, we can
decide whether that string is a sentence of some given language. (1)
Count the number of symbols in the given string (referred to hereafter,
as the input string). Let this number be p. (2) Calculate s(m(f(p))) + 1.
(3) Derive all sentences in the order described in this paragraph until
the specifier of the next derivation to be carried out has a specifier-
sum equal to the number calculated in step (2). (4) Compare each derived
sentence (ignoring nonterminated and blocked derivations) with the input
string, and if any of them matches it symbol-for-symbol, then the input
string is a sentence of the language, otherwise it is not. Furthermore,
for every possible different derivation, that is, for every different
syntactic analysis, of the input string, this procedure will produce a
sentence that matches the input string symbol-for-symbol. And, because
of the particular relationship between the specifiers of the sentences
and the grammar of the language, each specifier that guides the deri-
vation of a matching sentence is an unambiguous representation of one
of the possible syntactic analyses of the input string.

(98026) 534

We have now shown that, in principle, it is possible to provide all of the
possible syntactic analyses (with respect to a given grammar) for any string of
symbols by means of a mechanical analysis-by-synthesis procedure. When one
considers, however, the enormous number of sentences of natural languages of
only average length, one wonders about the practicality of such a recognition
procedure. Consider, for example, a language of 10,000 words (a rather
conservative figure for any of the European languages); the number of
different strings of n words, or less, would be 104(n + 1) However, not
all of these are sentences; but if we take into account the 50% redund-
ancy of English calculated by C.E. Shannon3, we can give 102(n+1) as a
reasonable estimate for the number of sentences. Suppose, now, we have
a recognition routine for this language which is carried out in the same
way as the decision procedure described above, and we wish to determine
all of the possible syntactic analyses for some string that is twenty
words long (the average length of an English sentence). This recog-
nition routine would have to derive and examine all of the sentences that
are twenty words long, or shorter, i.e. 1042 sentences, as well as many
that are longer, not to mention the much larger number of nonterminated
and blocked derivations. Compare this number with the estimated number
of seconds that have elapsed since the creation of the Earth, approxi-
mately 3.1017, or the number of centimeters from here to the furthest
known star, 2.1024. It is quite clear that such a recognition routine is
impossibly impractical for any existing or envisioned computer, or even
battery of computers. However, there are short cuts that can be used in
such a recognition routine which greatly reduce the number of sentences
that must actually be derived, as well as the length of the derivations
themselves. It is possible to delimit, for each input string, a nonini-
tial part of the ordering of the derivations such that all possible deri-
vations of that string occur within this noninitial part. Secondly by
means of procedures called "preliminary analysis" and "feedback", we can,
in the course of the analysis-by-synthesis routine for each input string,
progressively narrow the set of derivations that must be considered as
possible analyses. And, finally, the actual carrying out of the deri-
vations can be considerably shortened.

The first type of short cut has the effect of eliminating from con-
sideration a large number of the strings that are shorter than the
input string without actually deriving these shorter strings. This is
done by not beginning step 3 of the decision procedure at the beginning
of the ordering but rather at some later point which, however, still
precedes the input string. Earlier in this paper, we established an
ordering of the specifiers such that the specifier-sums increase
numerically. In addition, we set up a correspondence between the number
in each place of the specifiers and the number of applications of the
rule corresponding to that place such that these two numbers increase

(98026) 535

together. We also saw that the grammatical rules are structured in such a
way that, in general, the length of sentences increases with the number
of rule applications. Because of this particular relationship between the
specifier-sums, the number of rule applications, and the length of strings,
it is possible to define a function - specific to each language - which
calculates the smallest specifier-sum such that some specifier with that
specifier-sum corresponds to a string with the same number of symbols as
the input string. With such a function, in step 3 of the decision procedure
we need not begin the derivations at the beginning of the specifier ordering:
instead, by starting with specifiers of the minimum specifier-sum that
corresponds to a string with the length of the input string, we can skip
over many of the derivations that produce strings that are shorter than the
input string.

For any recognition routine that is actually in use, it would probably
be more economical to compile a table which, for each input-string length,
would give the first and last specifiers of the ordering that correspond
to terminated sentences of that length. This table could be compiled in
conjunction with the actual operation of the routine. Thus, the short cut
just described would be used only once for each input-string length and
thereafter use of the table would replace the need for counting the
number of symbols in each derived string. Such a table, of course, would
have to be constructed for each language. We shall refer to the range of
derivations defined for a given input string by this table as the "neigh-
bourhood" of that string.

There is no question that the method just described eliminates from
consideration a large number of derivations. However, there still remains
an unwieldy number of derivations within the neighbourhood of any input
string. Thus other short cuts are necessary. The next short cuts to be
described make use of the notion "linguistically significant class" of
derivations. A class of derivations is linguistically significant if,
in deriving the members of this class, the same permutation of subrules
of one and the same grammatical rule is applied in all of them. This is
a generalization of the intuitive notion, "sentence type". The specifiers
for the members of a linguistically significant class are all alike in
that the same integer occurs in the place that corresponds to the parti-
cular defining rule. In addition, the logical product of two linguisti-
cally significant classes, if it is nonempty, is also a linguistically
significant class, and the specifiers for such a class will have more
than one place containing the same integer. Note that if the product of
two classes is empty, it is because each class is defined by a different
permutation of the same rule; the corresponding class of specifiers
would be a class in which all of the members have simultaneously two
different integers in the same place - an impossibility. Thus, the sys-
tem of specifiers provides a convenient notation for designating a class

(98026) 536

of derivations: A specifier that has only some of its places uniquely speci-
fied and the others left free designates a class of derivations. If all of
its places are uniquely specified, then this class consists of just one
derivation. The following procedures will produce a sequence of linguisti-
cally-slgnificant-class designations connected to each other by the logical
connectives or and and not, and parentheses. A possible sequence might be:
(a  b)  -c, in which a, b, and c are partially specified specifiers. This
would indicate a set of sentences composed of those members of the union of
the linguistically significant classes a and b that are not also members of
the linguistically significant class c.

The first of these procedures that use the notion "linguistically-signi-
ficant class" is "preliminary analysis". This procedure examines the input
string directly, searching for features that would place it in one or more
linguistically significant classes of derivations - if it is, in fact, a
derivation of the language - and/or exclude it from one or more classes.
Then the recognition routine need not produce any derivations that do not
conform to these class-membership restrictions. It is clear that the more
sophisticated the preliminary analysis is, the more narrowly defined is
the class, or classes, to which the input string can be assigned. In fact,
most of the mechanical-translation and information-retrieval projects
have attempted to develop a recognition routine that is essentially equi-
valent to preliminary analysis as described here; but one whose output is
those fully specified specifiers that correspond to just the correct
derivations of the input string. Note, however, that the success of analy-
sis-by-synthesis is not dependent upon such a complete preliminary analysis;
instead it is a method for reducing the number of operations that must be
performed in order to analyze a sentence.

A failing derivation, that is, one that does not produce a string that
matches the input string, can be used to define more narrowly the set of
derivations that includes those which do produce the input string. This
feedback is possible because if the derivation does not produce a match-
ing string, this fact can in the great majority of cases be determined
before the derivation is complete. A partially complete derivation is
equivalent to a linguistically significant class of derivations, for the
initial part of its specifier is uniquely specified and the rest is un-
specified. Thus, each failing derivation will define a class of derivations
to which the input string does not belong. A class of derivations defined
in this way will have had only one of its members considered and even this
one will have been only partially derived. Furthermore, this class will
overlap with the set of derivations defined by the neighbourhood, the
preliminary analysis, and the feedback already carried out, because one of
its member derivations, was, in fact, considered.

There are several ways of determining that a derivation will fail
before it is completed. If a derivation is blocked, it fails because it

(98026) 537

cannot be completed. When a terminal symbol is introduced into the deri-
vation, it must be one of those that occurs in the input string. If it is
not, the derivation will fail. The neighbourhood of an input string contains
derivations that produce strings that are longer than the input string. At
some point in the derivation of such a string, the current intermediate
string will have enough symbols so that even if all of the applicable ellip-
sis rules that follow in the grammar were to be applied, the final string
would still be too long; thus this derivation will fail.

Earlier in this paper we established an ordering of the specifiers based
on their specifier-sums, and those specifiers with the same specifier-sum
we placed in numerical order. One of the reasons for this particular
ordering is that each specifier can give rise to the next one in the ordering
by a simple modified addition function. Another reason is that with this
ordering plus the structure of the specifiers themselves the number of
operations that are necessary to carry out a sequence of derivations can be
considerably cut down. The specifiers are constructed so that the order
from left to right of the places in the specifiers corresponds to the
order of the rules in the grammar. Thus, since the specifiers are in numeri-
cal order, some initial part of derivations that follow each other in the
ordering will be the same, and this initial part can be preserved and used
in the next derivation without actually having to be carried out again.

We have now seen that a recognition routine based upon the decision pro-
cedure for sentences of a natural language can be made into a practical
computer programme by use of the several short cuts described above. (I do
not mean to imply that these are the only possible short cuts that could
be programmed into this recognition routine.) The question now to be con-
sidered is whether there are any advantages in such a recognition routine
over those routines more commonly known, which are such as to justify the
research into the basic structure of natural and artificial languages that
has been and will continue to be necessary, as well as the additional
effort needed to convert the results of this research into a computer pro-
gramme. One important aspect of this routine is its treatment of input
strings that are not sentences. This recognition routine is fail-safe, in
that if a string cannot be derived from a given grammar, then the recog-
nition routine will indicate this fact - it will not give a false analy-
sis. This is because no derived terminated sentences will match the
input string. However, in the process of going through the recognition
routine, preliminary analysis and feedback will have defined in terms of
partially specified specifiers, a set of derivations which will indicate
a great deal about the input string. We have seen that a partially speci-
fied specifier is equivalent to a partially defined derivation. However,
a partially defined derivation is a string with some of its syntactic
structure indicated and the rest unknown. Thus, wherever the partially

(98026) 538

specified specifiers that are produced by preliminary analysis and feed-
back are in agreement about which rules to apply, there we can say some-
thing definite about the syntactic structure of an input string that is not
a sentence.

There are certain other advantages to this recognition routine. It is
in no way dependent upon the structure of any particular language, for the
grammar of the input language is just one of the subroutines of the whole
recognition routine, and it is a self-contained subroutine that has no
effect upon the structure of the others. Furthermore, in any mechanical-
translation scheme that separates the recognition of the syntactic struc-
ture of input sentences from the construction of their translations, the
grammar in this type of recognition routine is exactly the same as that
of the output language in the sentence-construction routine of a mechani-
cal-translation programme which translates into this language. This
means that if a grammar of some language is written for mechanical trans-
lation, it will serve in any mechanical-translation scheme that translates
either into or out of this language. Finally, the grammars that are
necessary for this recognition routine have the same formal properties as
those that are being written by linguists in fields other than mechanical
translation, and thus the work of many people outside of the mechanical-
translation field can be used directly in mechanical-translation
programmes.

REFERENCES

1. MATTHEWS, G.H. Denumerability of the Sentences of Natural Languages,
American Mathematical Society Meeting, New York, April 1960.
--------- Recognition of the Structure of Sentences. Quarterly Progress
Report No. 58, Research Laboratory of Electronics, Massachusetts
Institute of Technology, 1960, pp. 224-227.
-------- Use of Grammars within the Mechanical Translation Routine.

Proceedings of the National Symposium on Machine Translation (to
appear).

2. CHOMSKY, N. Logical Structure of Linguistic Theory, 1955. (unpublish-
ed, mimeographed; microfilm available at M.I.T. library).
--------- Note on Phrase Structure Grammars. Information and
Control 1959, 2,393-395.
--------- On Certain Formal Properties of Grammars. Information and
Control 1959, 2, 137-67.

--------- On the Notion "Rule of Grammar". Proceedings of the Sym-
posia on Applied Mathematics, XII (to be published by the American
Mathematical Society)
--------- Syntactic Structures. The Hague; Mouton and Company 1957
--------- and MILLER G.A., Finite State Languages. Information and
Control, 1958, 1, 91-112.

(98026) 539

3. SHANNON, C.E. Mathematical Theory of Communication. Bell Syst. tech J.
1948, 27, 379-423; 623-56
--------- Prediction and Entropy of Printed English. Bell Syst. tech.
J. 1951, 30, 50-64.

(98026) 540

