
[Proceedings of the National Symposium on Machine Translation, UCLA February 1960]

Session 10: PROGRAMMING

THE LOGIC OF AUTOMATIC FORMULA SYNTHESIS

Vincent E. Giuliano

Arthur D. Little, Inc., and Harvard University

Researchers in automatic translation have often been asked

whether it might be possible to derive translation algorithms auto-

matically--through a machine-programmed comparison of texts in

both translated and untranslated versions. Suppose, for example,

that parallel bodies of Russian and English scientific text are supplied

as simultaneous inputs to a machine; can the machine be somehow

instructed to infer or synthesize rules capable of transforming one

body into the other? In all fairness, the writer must hasten to

comment that this question remains as yet unanswered--because of

practical complications connected with translating large bodies of

text under carefully controlled conditions. The logic of a simple

variety of automatic rule synthesis can, however, indeed be

characterized; it is the subject matter of this paper. The logic will

be discussed within the setting of a particular application involving

English and Russian syntactic patterns, although it may ultimately

lend itself to other applications involving parallel texts. The sample

application will be characterized only briefly; a more complete dis-

cussion may be found in [1] .

We will hypothesize as input to the automatic algorithm-

synthesizing process a sizable and representative corpus of Russian

scientific text together with a suitable English translation. The

Russian text will be presumed to have been subjected to an automatic

Russian-English dictionary lookup process, and to a subsequent auto-

matic analysis of Russian syntactic sentence structure. The feasi-

bility of automatic syntactic analysis of Russian is now generally

accepted by professionals in the field; and, indeed, experimental

computer programs capable of doing such analysis have been described

at this Symposium [2, 3, 4] . We will assume that the analysis

relates each word in a sentence to an over-all syntactic structure by

specifying pertinent dependency relationships such as "subject",

"object", etc. , and that concurrently, it removes grammatical am-

biguities residual from a simple word-by-word translation.

462

Session 10: PROGRAMMING

The parallel English text will be presumed to be prepared

from the original in such a manner as to enable automatic cross-

identification between the lexical units of the two texts. That is,

Russian words must be readily identifiable with their English images.

Specialized methods of preparing translations for machine consump-

tion have been described in the literature by Harper, Hays, and

Scott [5], Jones [6], Mattingly [7], Giuliano [l] and others; they

will not be discussed in detail here. All of these methods are based

on specialized postediting of partial machine translations; they all

require the posteditor-translator to confine his transformations to

ones that can be dealt with automatically. For instance, words must

not be moved from one sentence to another. Unfortunately, postedit-

ing of the type required involves a significant manual effort; this is

perhaps the greatest practical obstacle in the path of automatic for-

mula synthesis.

Finally, we shall suppose that the parallel English text has also

been subjected to an automatic process of syntactic analysis--this

time of English sentence structure. In the light of the recent successes

with Russian syntax, it is plausible that this can be accomplished

without undue difficulty.

In the application being described, the automatic algorithm-

synthesizing process is to determine the influence of given syntactic

variables in the Russian text on producing a known syntactic trans-

formation in the English. Before each machine run, the variables

and the transformation must be specified as clues to the algorithm-

synthesizer by a human monitor; hopefully, the output will be an

algorithm relating the variables to the transformation. Such an

algorithm will, of course, be strictly valid only for the given corpus

of text. More concretely, the inputs to a formula-synthesizing run

might be:

Dr = a determiner formula that indicates to the machine the

general type of syntactic structure being investigated. For example,

Dr might specify the presence of a genitive noun complement of

another noun.

Br = a structural transformation that might be made by the

posteditor in the course of producing the English text from a word-

by-word translation. For example, the posteditor might insert "of"

before the translation of a given word.

463

Session 10: PROGRAMMING

1, 2, . . . , n = a List of binary-valued propositional state-

ments that may conceivably be pertinent in relating the Russian

structure defined by Dr to the transformation Br . Since these

are functions of textual position, they will be called "variables".

For example:

1 = The construction under consideration is within a

 subordinate clause.

2 = The word under consideration (the genitive complement)

 is modified by an adjective.

3 = The word predicting that the word under consideration

 (the noun accepting the complement) is the object of a

 preposition.

At any given position in the text, either Dr pertains or it does not.

When it pertains, then either Br pertains or it does not, and each

of the 1, 2 . . . , n are either true or false. Insofar as the

machine is concerned, then, Dr , Br , 1, 2, . . . , n may all be

treated as binary-valued variables that are functions of textual posi-

tion; subroutines must be provided capable of determining the truth

value of any of these at any textual position [1] .

We are now prepared to discuss the algorithm-synthesizing

process itself. The purpose of the logical process is to synthesize a

logical formula Φ out of the given 1, 2, . .. n that precisely

characterizes the conditions when the structure Dr leads to the

transformation Br in the given corpus. A resultant algorithm is

then of the form

Dr . Φ → Br

to be read: "Whenever the condition Dr is satisfied and the

formula Φ is true, then the transformation Br is to be performed

in the English text".

The first portion of the automatic synthesis process consists

of a machine pass through the parallel texts. Both texts are to be

scanned simultaneously and in phase with one another, from begin-

ning to end. The scanning is temporarily halted only when the com-

puter senses the presence in the Russian of a syntactic structure

satisfying the determiner condition Dr . When a context satisfying

Dr is encountered, the computer executes certain testing and incre-

menting operations before going on. In order to facilitate the

464

Session 10: PROGRAMMING

discussion of these operations, a brief paragraph will first be de-

voted to a topic of elementary logic, truth value configurations [8] .

There are 2n possible configurations of truth values of the

variables 1, 2 . . . , n ; these correspond to the rows in the

schematic listing of Table 1. A "1" in any position is here taken to

mean that the corresponding i is true in the given configuration,

a "0" that it is false. Thus, in the first configuration all the i

are false; in the last all the i are true. The configurations are

uniquely identified by the binary patterns of the 1's and O's; each row

in the configuration table corresponds to a binary number k between

0 and 2n -1 . The number k can therefore be used as a name for

the corresponding configuration of variables.

k 1, 2, ….. , n-1, n Interpretat ion

0 0 0 0 0 All i are false.

1 0 0 0 1 Only n is true.

2 0 0 1 0 Only n-1 is true.

.

.

.

2n-2 1 1 1 0 All i are true except n

2n-l 1 1 1 1 All i are true.

Table 1

Configurations of Logical Variables

Two sets of index registers {Xk} and {Yk} are set up

and retained within machine memory during the pass through the

parallel texts. The values of k correspond to the configurations

of i that are actually encountered in the text corpus for contexts

that make Dr true. When Dr is true, the appropriate sub-

routines are used to determine the truth values of each of the

1 , 2 , . . . , n . The pattern of 1's (trues) and 0's (falses) thus

obtained defines a logical configuration k' that characterizes the

state of the i variables for the instance of sentence structure

located at the given textual position. When a given configuration k'

is thus encountered for the first time in the corpus, the machine sets

aside two index registers, one for Xk' and one for Yk' , the

465

Session 10: PROGRAMMING

numbers in both registers being initially set to 0 . Then, and

whenever the same k' configuration is encountered in subsequent

contexts for which Dr is satisfied, the computer increments the

number in the Xk′ register by 1 .

After an Xk′ egister is incremented, the computer program

ascertains whether the posteditor elected to make the transformation

Br in the corresponding position in the English text. If not, the

computer merely continues its scan through the parallel texts, search-

ing for the next instance of Russian sentence structure that satisfies

Dr . If, however, the transformation Br is indeed found in the

corresponding position of the English text, the program then incre-

ments the Yk′ register by 1 before proceeding with the scanning

process. The machine goes through the entire corpus of text in this

manner, specifying the truth values of 1, 2, . . . , n whenever

Dr is satisfied, and selectively incrementing the Xk and Yk

registers.

After the text-scanning pass, a second machine program is

required to interpret the tally counts in the Xk and Yk registers.

Hopefully, its output will be a logical formula Φ compounded out

of the listed i variables and the logical connectives "." (and),

"v" (or) and "~" (not). At worst, it will be a clear indication that

important variables are missing from the i list.

The first operation performed by the interpreting program is

the computation of a third set of numbers {Zk } . For Xk = 0, Zk

are undefined; for Xk  0, Zk are defined as Zk = Yk /Xk .

From the counting process, it follows that defined values of Zk

satisfy 0 < Zk < 1 . The Zk define the desired formula Φ .

It is convenient to discuss the synthesis of formulas in terms of

four different types of patterns that can be described by the Zk :

Pattern Type 1: All Zk are defined and either 0 or 1.

When a pattern of this type is present, the formula synthesizer

has found an algorithm that cannot be improved insofar as the given

text corpus is concerned. The vector of binary elements

[Z1, Z2 , Z3, . . . , Z2n-1] is itself a representation of the

1 The methods of representing and reducing logical formulas mentioned
in this paper are well known in the fields of mathematical logic and
algebraic switching theory. Machinable methods for reducing logical
formulas to minimal normal forms, for resolving "do not care" condi-
tions, etc. , are treated in [9] , [10] , [11] , and [12] .

466

Session 10: PROGRAMMING

desired formula. Since the Zk are all either 0 or 1, each con-

figuration corresponds to either doing or not doing the transformation

Br , with no equivocation. The formula can be expressed in disjunctive

canonical form by taking a sum of the logical products corresponding

to the configurations for which Zk = 1. Each product is obtained by

conjoining all the n variables, negating just those to which a 0 is

assigned in the configuration considered. For example, a simple

hypothetical situation is illustrated in Table 2. The formula corresponding

to the Zk is

Φ = ~ 1 . 2 . ~ 3 v ~ 1 . 2 . 3 v 1 . ~ 2 . 3 .

Formulas thus obtained are in a so-called "canonical" disjunctive

normal form. They can often be reduced to simpler normal forms by

well-known rules of logic [9] , [10] , [11] .

 k 1 2 3 Xk Yk Zk

0 0 0 0 17 0 0

1 0 0 1 4 0 0

2 0 1 0 32 32 1

3 O l 1 118 118 1

4 1 0 0 2 0 0

5 1 0 1 61 61 1

6 1 1 0 1 0 0

7 1 1 1 75 0 0

Table 2

Hypothetical Pattern of Xk and Yk

Leading to a Pattern of Type 1

Certain of the variables included in the list 1, 2, . . . , n

may not be needed in order to construct a valid Φ formula. Such

variables will appear in the canonical form of a formula only vacuously.

For example, the formula ~ 1 . 2 . 3 v ~ 1 . 2 . ~ 3 contains

the variable 3 only vacuously, and is reducible to ~ 1 . 2 .

Vacuous variables can be automatically eliminated in the course of

reducing a formula to a more minimal normal form.

467

Session 10: PROGRAMMING

Pattern Type 2: Defined Zk are either 0 or 1, but some

 Zk are undefined.

A valid algorithm can be synthesized when a pattern of this

type is present, but it is not necessarily unique. The undefined Zk

are in one sense like the so-called "do not care" conditions of switch-

ing theory [10] , [11] , [12] . Since configurations corresponding to

these Zk do not occur in the experimental corpus, it might seem

that 0's and 1's could be assigned to them in any desirable manner.

In fact, machinable procedures exist for assigning values to Zk

for "do not care" configurations in such a way as to simplify the

resulting formula [10] , [11] . Assigning such values automatically

in this somewhat offhand fashion would most likely not, however, be

a sound experimental procedure. Different formulas would result

from assigning different sets of values to the undefined Zk . While

all such formulas would work equally well for the experimental cor-

pus, they would behave differently in the event that one of the "do not

care" conditions actually occurred in another text. If the value 1

were assigned to a Zk′ that should actually have the value 0, then

the algorithm would erroneously lead to the transformation Br

whenever configuration k' is encountered in another text. To be

safe, then, it is probably best to adopt a blanket rule for assigning

values automatically; the machine is to assign the value 0 to each

of the "do not care" Zk . A synthesized algorithm will then not

lead to the transformation Br if one of the "do not care" con-

figurations is encountered in a later text. Strategies alternative to

this one have, however, been proposed by Lawler [13] in an interest-

ing paper that views automatic algorithm synthesis as a statistical

game.

Consideration might well be given to the use of a ternary-

valued logic to enable better treatment of the "do not care" conditions.

Assigning the value 0 to the undefined Zk is a "fail-safe" proce-

dure since the resulting algorithm leads to the execution of the action

Br only in textual situations actually examined in the experimental

corpus. Nevertheless, the effect of a 0 assigned to an undefined Zk

is the same as that of a 0 computed from a non-vanishing Xk .

Certain information is therefore not reflected in the algorithm: in

the former case the configuration was not encountered, in the latter

468

Session 10: PROGRAMMING

case it was encountered and found to have the value 0. It may be

possible to keep better track of this information by using a three-

valued logic, where one of the values means "unresolved".

Pattern Type 3: Some of the Zk are proper fractions,

 0 < Zk < 1, but at least one Zk is 1 .

A valid algorithm can be obtained when a pattern of this type

is present, but this algorithm will be "weak" in the sense that it

does not account for all instances of Dr leading to Br in the

experimental corpus. The fractional values of Zk correspond to

configurations that only sometimes lead to the given Br transfor-

mation. Other variables besides those included in 1, 2, . . . , n

must be taken into account when these configurations are present.

The weak algorithm is obtained by simply rounding off each of the

fractional Zk to zero, thus giving a pattern of type 1 or 2 that can

be reduced by the methods already discussed. It is important to

stress the fact that weak algorithms are also "fail-safe" insofar as

the experimental corpus is concerned; a derived algorithm leads to

the transformation Br only for configurations that always lead to

the transformation in the experimental corpus.

Pattern Type 4: Some Zk are fractional and no Zk is 1.

When a pattern of this type is present, no configuration of the

given variables unambiguously leads to the given action, and it is

not possible to synthesize a valid basic algorithm from 1, 2, . . . , n .

Pertinent variables are clearly missing from this list and must be

identified by the monitor before successful results can be obtained

from the automatic process.

Outputs of the logical formula-synthesizing process might

consist of the derived algorithm, in both printed and machine-readable

format, and an edited list of the pertinent Xk , Yk , and Zk counts.

The list should facilitate human monitoring and control of the process.

The counts give an indication of the relative occurrence frequencies

of the various configurations; they should enable evaluation of a de-

rived algorithm in terms of the types and frequencies of the situations

encountered. Again, to the extent that the experimental corpus is

only approximately representative of what can occur in Russian

technical writing, so also will the algorithms synthesized from this

data be, at best, only approximately valid. A discussion of the degree

469

Session 10: PROGRAMMING

of validity to be assigned to a formula obtained from a given corpus

is, however, plainly beyond the scope of this paper. A machine-

derived algorithm must certainly be subject to human scrutiny and

evaluation before it can be finally accepted.

Results of late research in the syntactic problems of Russian-

English translation are encouraging--so much so that there is some

doubt as to the need in this area for such a relatively exotic tool as

automatic algorithm synthesis. Nevertheless, the logical process

may someday prove useful in an exploration of the "fine structure" of

syntactic transformations. That is, the method might help in the

detection and analysis of relatively infrequently occurring phenomena

involving complex interrelationships of syntactic variables.2 Beyond

the scope of Russian-English syntax, moreover, the logical techniques

might prove to be useful in the study of other language pairs that now

remain relatively unexplored.

2 This point, as well as several others germain to the topic of auto-
matic algorithm synthesis, was raised by David Hays in Session 1 of
this Symposium.

470

Session 10: PROGRAMMING

REFERENCES

[1] Giuliano, V.E. , "A Formula Finder for the Automatic Synthesis
of Translation Algorithms", Mathematical Linguistics and
Automatic Translation, Report NSF-2, Section IX, Harvard
Computation Laboratory, 1959.

[2] A New Approach to the Mechanical Syntactic Analysis of Russian,
National Bureau of Standards Report 6595, 1959.

[3] Harper, K. E. , and Hays, D. G. , The Use of Machines in the
Construction of a Grammar and Computer Program for Struc-
tural Analysis, RAND Corporation Report P-1588, 1959.

[4] Sherry, M.E., "Predictive Syntactic Analysis", presented in
Session 3 of this Symposium.

[5] Harper, K. E. , Hays, D. G. , and Scott, B. J. , Manual for Post-
editing Russian Text, RAND Corporation Report P-1624, 1959.

[6] Jones, P. E. , "A Feedback System for the Harvard Automatic
Translator", Mathematical Linguistics and Automatic Transla-
tion, Report NSF-3, Section XIV, Harvard Computation
Laboratory, 1959.

[7] Mattingly, I. G. , "Post-editing for Feedback", Ibid., Section I.

[8] Quine, W. V. , Methods of Logic, Henry Holt and Co. , New
 York, (1953).

[9] Synthesis of Electronic Computing and Control Circuits, Annals
 of the Computation Laboratory of Harvard University, Vol. 27,
 Harvard University Press, Cambridge, 1951.

[10] Karnaugh, M., "Synthesis of Combinational Logic Circuits",
 Communication and Electronics, No. 9, pp. 593-598, Novem-
 ber, 1953.

[11] Roth, J.P. , "Algebraic Topological Methods in Synthesis",
 Proceedings of an International Symposium on the Theory of
 Switching, Annals of the Computation Laboratory of Harvard
 University, Vol. 29, Harvard University Press, Cambridge,
 1959.

[12] Quine, W. V. , "Two Theorems about Truth Functions",
 Boletín de la Sociedad Matemática Mexicana, Vol. 10, pp.
 64-70, 1953.

[13] Lawler, E. L. , "The Empirical Formulation of Translation
 Algorithms", Papers Presented at the Seminar on Mathematical
 Linguistics, Vol. V, Harvard University, 1959.

471

