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Researchers in automatic translation have often been asked 

whether it might be possible to derive translation algorithms auto- 

matically--through a machine-programmed comparison of texts in 

both translated and untranslated versions.    Suppose,  for example, 

that parallel bodies of Russian and English scientific text are supplied 

as simultaneous inputs to a machine; can the machine be somehow 

instructed to infer or synthesize rules capable of transforming one 

body into the other?    In all fairness,   the writer must hasten to 

comment that this question remains as yet unanswered--because of 

practical complications connected with translating large bodies of 

text under carefully controlled conditions.     The logic of a simple 

variety of automatic rule synthesis can,   however,   indeed be 

characterized; it is the subject matter of this paper.     The logic will 

be discussed within the setting of a particular application involving 

English and Russian syntactic patterns,  although it may ultimately 

lend itself to other applications involving parallel texts.    The sample 

application will be characterized only briefly; a more complete dis- 

cussion may be found in [1] . 

We will hypothesize as input to the automatic algorithm- 

synthesizing process a sizable and representative corpus of Russian 

scientific text together with a suitable English translation.     The 

Russian text will be presumed to have been subjected to an automatic 

Russian-English dictionary lookup process,   and to a subsequent auto- 

matic analysis of Russian syntactic sentence structure.     The feasi- 

bility of automatic syntactic analysis of Russian is now generally 

accepted by professionals in the field; and, indeed, experimental 

computer programs capable of doing such analysis have been described 

at this  Symposium  [2, 3, 4] .    We will assume that the analysis 

relates each word in a sentence to an over-all syntactic structure by 

specifying pertinent dependency relationships such as "subject", 

"object",   etc. ,  and that concurrently,  it removes grammatical am- 

biguities residual from a simple word-by-word translation. 
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The parallel English text will be presumed to be prepared 

from the original in such a manner as to enable automatic cross- 

identification between the lexical units of the two texts.     That is, 

Russian words must be readily identifiable with their English images. 

Specialized methods of preparing translations for machine consump- 

tion have been described in the literature by Harper, Hays, and 

Scott [5],   Jones [6],   Mattingly [7],   Giuliano [l]    and others; they 

will not be discussed in detail here.    All of these methods are based 

on specialized postediting of partial machine translations; they all 

require the posteditor-translator to confine his transformations to 

ones that can be dealt with automatically.     For instance, words must 

not be moved from one sentence to another.     Unfortunately, postedit- 

ing of the type required involves a significant manual effort; this is 

perhaps the greatest practical  obstacle   in the path of automatic for- 

mula synthesis. 

Finally,  we shall suppose that the parallel English text has also 

been subjected to an automatic process of syntactic analysis--this 

time of English sentence structure.   In the light of the recent successes 

with Russian syntax, it is plausible that this can be accomplished 

without undue difficulty. 

In the application being described, the automatic algorithm- 

synthesizing process is to determine the influence of given syntactic 

variables in the Russian text on producing a known syntactic trans- 

formation in the English.    Before each machine run,   the variables 

and the transformation must be specified as clues to the algorithm- 

synthesizer by a human monitor; hopefully,   the output will be an 

algorithm relating the variables to the transformation.    Such an 

algorithm will, of course, be strictly valid only for the given corpus 

of text.     More concretely, the inputs to a formula-synthesizing  run 

might be: 

Dr    =  a determiner formula that indicates to the machine the 

general type of syntactic structure being investigated.     For example, 

Dr   might specify the presence of a genitive noun complement of 

another noun. 

Br    =  a structural transformation that might be made by the 

posteditor in the course of producing the English text from a word- 

by-word translation.     For example, the posteditor might insert "of" 

before the translation of a given word. 
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1,   2,   . . . ,   n     =   a List of binary-valued propositional state- 

ments that may conceivably be pertinent in relating the Russian 

structure defined by   Dr    to the transformation   Br .  Since these 

are functions of textual position,  they will be called "variables". 

For example: 

1  =  The construction under consideration is within a 

  subordinate clause. 

2  =  The word under consideration (the genitive complement) 

  is modified by an adjective. 

3  =  The word predicting that the word under consideration 

  (the noun accepting the complement) is the object of a 

  preposition. 

At any given position in the text, either Dr pertains or it does not. 

When it pertains, then either Br pertains or it does not, and each 

of the 1, 2 . . . , n are either true or false. Insofar as the 

machine is concerned,  then,   Dr  ,  Br ,   1, 2, . . . , n    may all be 

treated as binary-valued variables that are functions of textual posi- 

tion;  subroutines must be provided capable of determining the truth 

value of any of these at any textual position [1] . 

We are now prepared to discuss the algorithm-synthesizing 

process itself.   The purpose of the logical process is to synthesize a 

logical formula   Φ  out of the given  1,  2,  . .. n    that precisely  

characterizes the conditions when the structure  Dr   leads to the 

transformation  Br    in the given corpus.    A resultant algorithm is 

then of the form 

Dr  .  Φ  →  Br 

to be read:   "Whenever the condition   Dr   is satisfied  and  the 

formula     Φ   is true,  then the transformation   Br    is to be performed 

in the English text". 

The first portion of the automatic synthesis process consists 

of a machine pass through the parallel texts.     Both texts are to be 

scanned simultaneously and in phase with one another,  from begin- 

ning to end.   The scanning is temporarily halted only when the com- 

puter senses the presence in the Russian of a syntactic structure 

satisfying the determiner condition    Dr .    When a context satisfying 

Dr   is encountered,  the computer executes certain testing and incre- 

menting operations before going on.    In order to facilitate the 
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discussion of these operations,  a brief paragraph  will first be de- 

voted to  a topic  of  elementary logic,  truth value configurations [8] . 

There are   2n   possible configurations of truth values of the 

variables   1,  2 . . . ,  n  ;   these correspond to the rows in the 

schematic listing of Table 1.    A "1" in any position is here taken to 

mean that the corresponding   i   is true in the given configuration, 

a  "0" that it is false.    Thus,  in the first configuration all the  i 

are false;   in the last all the   i    are true.     The configurations are 

uniquely identified by the binary patterns of the  1's and O's; each row 

in the configuration table corresponds to a binary number   k   between 

0 and   2n -1 .     The number   k   can therefore be used as a name for 

the corresponding configuration of variables. 

k 1,   2,  ….. , n-1,   n         Interpretat ion 

0  0       0    0     0 All   i  are false. 

1  0     0    0   1  Only n    is true. 

2  0     0    1        0 Only  n-1   is true. 

.            .       .            .          .  

.            .       .            .          .  

.            .       .            .          .  

2n-2  1  1     1  0  All   i  are true except n 

2n-l  1  1     1       1 All   i  are true. 

Table  1 

Configurations of Logical Variables 

Two sets of index registers   {Xk}      and     {Yk}   are set up 

and retained within machine memory during the pass through the 

parallel texts.    The values of  k   correspond to the configurations 

of   i   that are actually encountered in the text corpus for contexts 

that make   Dr   true.    When Dr    is true,  the appropriate sub- 

routines are used to determine the truth values of each  of the 

1 ,   2 ,   . . . , n  .    The pattern of   1's (trues) and 0's (falses) thus 

obtained defines a logical configuration  k'  that characterizes the 

state of the   i   variables for the instance of sentence structure 

located at the given textual position.    When a given configuration  k' 

is thus encountered for the first time in the corpus,  the machine sets 

aside two index registers,  one   for  Xk'   and one for  Yk' ,  the 
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numbers in both registers being initially  set to  0 .     Then,  and 

whenever the same   k'   configuration is encountered in subsequent 

contexts for which    Dr     is satisfied,  the computer increments the 

number in the   Xk′   register by  1 . 

After an    Xk′   egister is incremented,  the computer program 

ascertains whether the posteditor elected to make the transformation 

Br    in the corresponding position in the English text.    If not, the 

computer merely continues its scan through the parallel texts, search- 

ing for the next instance of Russian sentence structure that satisfies 

Dr .    If,  however,  the transformation   Br   is indeed found in the 

corresponding position of the English text, the  program then incre- 

ments the  Yk′     register by 1 before proceeding with the scanning 

process.     The machine goes through the entire corpus of text in this 

manner, specifying the truth values of  1,  2,   . . . ,  n   whenever 

Dr    is satisfied,   and selectively incrementing the   Xk    and  Yk 

registers. 

After the text-scanning pass,   a second machine program is 

required to interpret the tally counts in the  Xk    and   Yk    registers. 

Hopefully,   its output will be a logical formula   Φ   compounded out 

of the listed  i    variables and the logical connectives  "."  (and), 

"v" (or) and "~" (not).    At worst, it will be a clear indication that 

important variables are missing from the    i  list. 

The first operation performed by the interpreting program is 

the computation of a third set of numbers   {Zk } .  For  Xk  = 0,   Zk 

are undefined; for   Xk     0,   Zk    are defined as  Zk  =  Yk /Xk  . 

From the counting process,  it follows that defined values of  Zk 

satisfy   0 < Zk < 1 .    The   Zk    define the desired formula   Φ . 

It is convenient to discuss the synthesis of formulas in terms of 

four different types of patterns that can be described by the  Zk  : 

Pattern Type 1:   All Zk  are defined and either 0 or 1. 

When a pattern of this type is present,   the formula synthesizer 

has found an algorithm that cannot be improved insofar as the given 

text corpus is concerned.    The vector of binary elements 

[  Z1,   Z2 ,   Z3,    .   .   .   ,   Z2n-1]   is  itself a representation  of the 

1  The methods of representing and reducing logical formulas mentioned 
in this paper are well known in the fields of mathematical logic and 
algebraic switching theory.     Machinable methods for reducing logical 
formulas to minimal normal forms,   for resolving "do not care" condi- 
tions,   etc. ,   are treated in  [9] ,   [10] ,   [11] ,   and [12] . 
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desired formula.     Since the  Zk are all either  0  or  1, each con- 

figuration corresponds to either doing or not doing the transformation 

Br , with no equivocation.     The formula can be expressed in disjunctive 

canonical form by taking a sum of the logical products corresponding 

to the configurations for which    Zk = 1.    Each product is obtained by 

conjoining all the  n  variables, negating just those to which a  0  is 

assigned in the configuration considered.     For example, a simple 

hypothetical situation is illustrated in Table 2.  The formula corresponding 

to the  Zk  is 

Φ =   ~ 1 .  2  .   ~   3   v  ~  1 .   2   . 3   v   1  .  ~ 2  .  3    . 

Formulas thus obtained are in a so-called "canonical" disjunctive 

normal form.     They can often be reduced to simpler normal forms by 

well-known rules of logic [9] ,   [10] ,   [11] . 

                     k     1  2  3         Xk        Yk      Zk 

0 0  0  0    17         0        0 

1 0   0   1        4    0       0 

2 0  1  0       32       32        1 

3 O  l    1      118     118        1 

4 1   0   0       2   0      0 

5 1   0   1      61       61         1 

6 1    1    0         1         0        0 

7 1    1    1        75        0        0 

Table 2 

Hypothetical Pattern of Xk  and Yk 

Leading to a Pattern of Type  1 

Certain of the variables included in the list   1,  2,   . . . ,   n 

may not be needed in order to construct a valid  Φ  formula.    Such 

variables will appear in the canonical form of a formula only vacuously. 

For example,  the formula  ~ 1  .  2  .  3  v  ~ 1  .  2  .  ~  3   contains 

the variable  3  only vacuously,  and is reducible to   ~ 1  .  2  . 

Vacuous   variables can be automatically eliminated in the course of 

reducing a formula to a more minimal normal form. 
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Pattern Type 2:     Defined  Zk    are either  0  or  1, but some 

      Zk  are undefined. 

 

A valid algorithm can be synthesized when a pattern of this 

type is present,   but it is not necessarily unique.     The undefined  Zk 

are in one sense like the so-called "do not care" conditions of switch- 

ing theory [10] ,   [11] ,  [12] .    Since configurations corresponding to 

these   Zk    do not occur in the experimental corpus,   it might seem 

that  0's   and 1's   could be assigned to them in any desirable manner. 

In fact,  machinable procedures exist for assigning values to  Zk 

for "do not care" configurations in such a way as to simplify the 

resulting formula [10] , [ 11] .    Assigning such values automatically 

in this somewhat offhand fashion would most likely not,  however,   be 

a sound experimental procedure.    Different formulas would result 

from assigning different sets of values to the undefined  Zk .    While 

all such formulas would work equally well for the experimental cor- 

pus,  they would behave differently in the event that one of the "do not 

care" conditions actually occurred in another text.    If the value  1 

were assigned to a  Zk′   that should actually have the value  0,  then 

the algorithm would erroneously lead to the transformation   Br 

whenever configuration   k'   is encountered in another text.     To be 

safe,  then,  it is probably best to adopt a blanket rule for assigning 

values automatically;   the machine is to assign the value  0  to each 

of the "do not care"    Zk .    A synthesized algorithm will then  not 

lead to the transformation  Br    if one of the "do not care" con- 

figurations is encountered in a later text.    Strategies alternative to 

this one have,  however,   been proposed by Lawler [13]   in an interest- 

ing paper that views automatic algorithm synthesis as a statistical 

game. 

Consideration might well be given to the use of a ternary- 

valued logic to enable better treatment of the "do not care" conditions. 

Assigning the value  0  to the undefined   Zk   is a "fail-safe" proce- 

dure since the resulting algorithm leads to the execution of the action 

Br    only in textual situations actually examined in the experimental 

corpus.    Nevertheless,  the effect of a 0 assigned to an undefined   Zk 

is the same as that of a  0   computed from a non-vanishing  Xk . 

Certain information is therefore not reflected in the algorithm:  in 

the former case the configuration was not encountered, in the latter 
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case it was encountered and found to have the value 0. It may be 

possible to keep better track of this information by using a three- 

valued logic, where one of the values means "unresolved". 

Pattern Type 3:     Some of the  Zk    are proper fractions, 

      0 < Zk < 1,  but at least one   Zk   is  1 . 

A valid algorithm can be obtained when a pattern of this type 

is present,   but this algorithm will be "weak" in the sense that it 

does not account for all instances of  Dr   leading to  Br   in  the 

experimental corpus.    The fractional values of   Zk    correspond to 

configurations that only sometimes lead to the given   Br   transfor- 

mation.    Other variables besides those included in  1,  2,  . . . ,  n 

must be taken into account when these configurations are present. 

The weak algorithm is obtained by simply rounding off each of the 

fractional Zk to zero, thus giving a pattern of type 1 or 2 that can 

be reduced by the methods already discussed.    It is important to 

stress the fact that weak algorithms are also "fail-safe" insofar as 

the experimental corpus is concerned; a derived algorithm leads to 

the transformation   Br   only for configurations that always lead to 

the transformation in the experimental corpus. 

Pattern Type 4:     Some  Zk   are fractional and no  Zk  is 1. 

When a pattern of this type is present,   no configuration of the 

given variables unambiguously leads to the given action,   and it is 

not possible to synthesize a valid basic algorithm from  1, 2, . . . ,  n . 

Pertinent variables are clearly missing from this list and must be 

identified by the monitor before successful results can be obtained 

from the automatic process. 

Outputs of the logical formula-synthesizing process might 

consist of the derived algorithm,  in both printed and machine-readable 

format, and an edited list of the pertinent  Xk ,   Yk ,  and  Zk   counts. 

The list should facilitate human monitoring and control of the process. 

The counts give an indication of the relative occurrence frequencies 

of the various configurations; they should enable evaluation of a de- 

rived algorithm in terms of the types and frequencies of the situations 

encountered.    Again,  to the extent that the experimental corpus is 

only approximately representative of what can occur in Russian 

technical writing,  so also will the algorithms synthesized from this 

data be,  at best,  only approximately valid.     A discussion of the degree 
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of validity to be assigned to a formula obtained from a given corpus 

is,   however,  plainly beyond the scope of this paper.    A machine- 

derived algorithm must certainly be   subject to human scrutiny and 

evaluation before it can be finally accepted. 

Results of late research in the syntactic problems of Russian- 

English translation are encouraging--so much so that there is some 

doubt as to the need in this area for such a relatively exotic tool as 

automatic algorithm synthesis.    Nevertheless,   the logical process 

may someday prove useful in an exploration of the "fine structure" of 

syntactic transformations.    That is,   the method might help in the 

detection and analysis of relatively infrequently occurring phenomena 

involving complex  interrelationships   of   syntactic variables.2        Beyond 

the scope of Russian-English syntax,  moreover,   the logical techniques 

might prove to be useful in the study of other language pairs that now 

remain relatively unexplored. 

2 This point, as well as several others germain to the topic of auto- 
matic algorithm synthesis, was raised by David Hays in Session 1 of 
this Symposium. 
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