
[Proceedings of the National Symposium on Machine Translation, UCLA February 1960]

Session 10: PROGRAMMING

MIMIC1: A TRANSLATOR FOR ENGLISH CODING

Hugh Kelly

The RAND Corporation

Summary

This paper describes an automatic coding system developed at
The RAND Corporation to provide rapid implementation, testing, and
modification of computer routines for linguistic research. A Trans-
lator analyzes and translates English-like statements into a pseudo-
code program. An Interpreter subsequently executes the program.
The system is being used to program rules for insertion and inflection
in a Russian-English translation routine.

MIMIC is an automatic coding system developed2 at The RAND

Corporation and programmed for the IBM 704 computer. It enables

the user to write computer routines for linguistic research as a series

of English-like sentences. Each sentence is analyzed and translated

into a compact pseudo-code by the MIMIC Translator. A second

routine, the MIMIC Interpreter, subsequently uses this numeric code

to select and execute the appropriate sequence of machine-language

subroutines, thereby performing the action specified in the original

English statement.

The system was developed to implement, test, and modify

linguistic algorithms with a minimum of time and effort. It frees

the programmer from a multitude of time-consuming details by

allowing him to write programs at a language level considerably

higher than that of the computer. The user chooses and defines his

own vocabulary; thereafter he is free to use this terminology without

adverting to the details of the variables about which he writes.

MIMIC was designed specifically to program the rules for in-

sertion and inflection of English equivalents in the RAND Russian-

English translation routine. The tree-like codes that embodied these

algorithms were subject to frequent modification in order to reflect

changes in the grammar code, refinements in our theory of structure,

1 MIMIC is not an acronym. The name is intended to reflect the fact
that the system translates an "imitation" of English.

2 I wish to thank my colleagues M.I. Bernstein, I.D. Greenwald,
D.G.Hays, C.H. Smith, and T.W. Ziehe for the helpful suggestions
which they contributed to the development of the system.

451

Session 10: PROGRAMMING

and improvements in the algorithms themselves. This section of

the routine performs a relatively simple task; for each word in the

sentence, a series of conditional tests determines a branching path

through the code. Each path terminates with the selection of the in-

sertions, deletions, inflections, or substitutions that are needed for

this word; four terminal subroutines perform the indicated operations

on the English equivalent. The latest revision of insertion and inflec-

tion rules is currently being programmed in MIMIC.

The system allows three kinds of statements. The programmer

uses imperative and conditional statements in writing his program;

these are compiled into a pseudo-code routine by the Translator. He

uses definitional statements to define new terminology; these state-

ments are not compiled into pseudo-code but cause new words and

their meanings to be entered in the Translator's dictionary.

Some imperative statements specify simple control commands,

such as "Go to location-x" or "Exit interpreter". Other imperative

statements specify operations at a higher level, such as "Insert 'THE'

ahead of this-word, then go-to k-1". MIMIC currently contains 8 such

operations that deal with inflection and insertion. New operations are

added to the language (or dictionary of MIMIC) by definitional state-

ments; subroutines to perform these actions must be provided,

written either in MIMIC or in machine-language.

A conditional statement specifies a condition to be tested and

the action to be performed if the test is successful; control goes to

the following statement if the condition is not met. For example:

IF POSITION-1 OF THE GRAMMAR-CODE OF THIS-WORD = 2,

GO-TO K-1.

An imperative statement may be joined:

IF POSITION-1 OF THE GRAMMAR-CODE…….= 2, INSERT

(THE) BEFORE THIS-WORD, THEN GO-TO K-1.

Conditional N-way switch statements are convenient for

branching:

452

Session 10: PROGRAMMING

SWITCH ON POSITION-1 OF THE GRAMMAR-CODE OF THIS-WORD,

OR GO-TO X-l.

IF = 2, GO-TO K-l.

IF = 4, ADD(-ING) AND GO-TO P-5.

IF = 6, INSERT (TO) AND EXIT.

The Translator is equipped with a dictionary of source-language

words. Every dictionary entry contains the following information:

1. A source-language word of 12 alphanumeric characters or

less

2. A classification-code symbol for the source-language word

3. A target-language equivalent, or meaning

The classification-code symbol for a word indicates what func-

tion it performs in the artificial source language. There are 10

classes of functions to specify: (1) a test, (2) an imperative command,

(3) an item, (4) a mask, (5) an index, (6) a relation, (7) a single-

character value, (8) a multiple-character value, (9) an operand, (10)

a location. A word may belong to only one class, i. e. , have only

one primary function. But as we will see later, it may have second-

ary functions in certain contexts. Similarly, a word has only one

primary equivalent.

This lack of ambiguity in function and meaning in the source

language would seem desirable; but, in fact, MIMIC's inability to

assign several primary meanings to a word for later resolution in

the context of a particular statement is restrictive. An example will

illustrate the point.

Consider the word "genitive", an English adjective whose mean-

ing is unambiguously the same in the phrases "a genitive noun" and

"a genitive adjective". In both, it denotes the case of a word.

But the word "genitive" should have an ambiguous meaning in

the MIMIC dictionary; that is, it should have two distinct equivalents,

and selection between them should be determined by the context of the

particular statement in which "genitive" appears. The two meanings

are needed because the RAND grammar code represents the genitive

case of a noun by one symbol and the genitive case of an adjective by

a different symbol. The ability to make contextually resolvable,

ambiguous definitions would allow us to specify the two tests for geni-

tive case with the same word:

453

Session 10: PROGRAMMING

IF CASE-OF-NOUN = GENITIVE GO-TO K-l, and IF CASE-OF-

ADJECTIVE = GENITIVE, ...

where "genitive" would be defined by:

D-l DEFINE GENITIVE = X FOR CASE-OF-NOUN, AND = Y FOR

CASE-OF-ADJECTIVE.

Inability to handle ambiguous definitions makes us use somewhat in-

elegant expressions to accomplish the same tests, viz:

IF CASE-OF-NOUN = GENITIVE-NOUN, GO-TO K-l and IF CASE-

OF-ADJECTIVE = GENITIVE-ADJECTIVE, ...

where "genitive-noun" is set equal to x and "genitive-adjective" is

equated to y .

Let us consider a simple algorithm to see how it can be expressed

in MIMIC. Assume that we wish to test the part-of-speech classi-

fication of each word in a sentence, determining whether the word is

a noun. If it is, we wish to branch to another part of our program to

insert the article "the" if the case is nominative; if it is not a noun,

we will increase the word-counter by 1 and repeat the test on the

next word in the sentence until all have been tested. Assuming that a

noun is identified by having "2" in the first (left-most) position of its

grammar code, and that nominative case is represented by "7" in the

third position, we can write the following MIMIC Statements:

NAME STATEMENT

J-l IF POSITION-1 OF THE GRAMMAR-CODE OF THIS-WORD =

 2, GO-TO K-l.

M-l IF WORD-TALLY  END-OF-SENTENCE, INCREASE WORD-

 TALLY BY 1, GO-TO J-l.

 OTHERWISE EXIT.

K-l IF POSITION-3 OF GRAMMAR CODE OF THIS-WORD = 7,

 INSERT 'THE', GO-TO M-l.

 GO-TO M-l ANYHOW.

Figure 1 MIMIC PROGRAM FOR INSERTING ARTICLE

NOTE: A hyphenated phrase is considered one word. Words may be
of any length for readability with the restrictions that (1) the
total statement not exceed 72 characters, and (2) words must
differ in the first 12 letters to be unique. The above violate
restriction 1 for clarity of exposition.

454

Session 10: PROGRAMMING

To translate J-l, the MIMIC Translator scans the statement,

isolates a word, and attempts to find the word in its dictionary. The

dictionary entry for a word contains the meaning for the word and

also a classification symbol telling what type of word it is, i. e. ,

what function it can perform in a sentence. A simple conditional

statement must contain the types of words shown in Figure 2.

Type of Word Needed Satisfied in J-l by:

1. A conditional word IF

2. An item-specifier GRAMMAR - CODE

3. A mask for the item POSITION-1

4. An index for the item THIS-WORD

5. A relation symbol =

6. A value or values that satisfy 2
the test

7. The location of the next state- K-l
ment to execute if the test is
successful

Figure 2 CONTENT OF A MIMIC STATEMENT

The underscored words in Figure 2 are not part of the basic MIMIC

system, so we must enter them in the dictionary with definitional

statements, specifying what function we want them to perform and

assigning an equivalent. We do so with the following statements:

D-2 DEFINE GRAMMAR-CODE AS ITEM-07.

D-3 DEFINE POSITION-1 AS MASK-01.

D-4 DEFINE THIS-WORD AS INDEX-04.

The first statement enters the word "grammar-code" in the

dictionary, classes it as an item-specifying word, and gives it the

meaning "07". Whenever "grammar-code" is encountered in a state-

ment now, its pseudo-code translation will be "07". If the Interpreter

routine is to execute this pseudo-code properly, the 7th name on its

list of item-fetching subroutines must refer to the subroutine that

fetches grammar codes. Terms like "item-07", "mask-01", and

"index-04" are provided as system symbols that enable the pro-

grammer, when first building a vocabulary, to define his basic

terminology in terms of their function in MIMIC. Thereafter, he

adds new words by defining them in terms of this basic terminology.

Thus, given definitions D-2 and D-3 above, we will later write:

455

Session 10: PROGRAMMING

D-6 DEFINE PART-OF-SPEECH AS POSITION-1 OF THE

GRAMMAR - CODE.

Since statement J-l tests whether a word is a noun, we can

clarify its intent by rewriting it as:

J-2 IF POSITION-1 OF THE GRAMMAR-CODE OF THIS-WORD =

NOUN, GO-TO K-l.

Assuming that the MIMIC dictionary does not yet contain the

word "noun", we enter it with:

D-5 DEFINE NOUN = 2 .

The word "noun" can now be used interchangeably with "2" in

specifying values that satisfy a condition. Furthermore, we have

committed ourselves to using the word "noun" for no other reason

than to specify a value. This restriction will be modified by a more

useful definition of the word "noun" as the discussion develops.

Although statement J-2 is more descriptive than J-l, we note

that the words "position-1" and "grammar-code" remain as conces-

sions to the computer's demand for explicit detail. It is reasonable

to replace the words "position-1" of the "grammar-code" with the

single, more descriptive term "part-of-speech" since this is what

position-1 of the grammar-code contains. The replacement changes

our statement to:

J-3 IF PART-OF-SPEECH OF THIS-WORD = NOUN, GO-TO K-l.

Before statement J-3 can be correctly translated, the MIMIC dic-

tionary must be provided with a definition of "part-of-speech", as

follows:

D-6 DEFINE PART-OF-SPEECH AS POSITION-1 OF THE

GRAMMAR-CODE.

Let us postpone discussion of this definition for a moment in

order to compare statements J-l and J-3.

456

Session 10: PROGRAMMING

J-l IF POSITION-1 OF THE GRAMMAR-CODE OF THIS-WORD =

2, GO-TO K-l.

J-3 IF PART-OF-SPEECH OF THIS-WORD = NOUN, GO-TO K-l.

J-l specifies the test in computer-oriented terminology, where-

as J-3 specified the same test in terms that make the meaning of the

test clear at a glance. J-l specifies the object of the test in terms

of its data format, "position-1 of the grammar-code"; J-3 specifies

the object of the test in terms of its significance to the programmer,

"part-of-speech", without reference to the details of data format.

J-3 contains two symbols, "part-of-speech" and "noun", which

the user himself was forced to define or do without. Hopefully, be-

cause he defined them, he chose them to be appropriate to his prob-

lem, he understands their meanings, and he will find them easy to

recall for future use.

Returning to the definitional statement D-6, notice that it is a

natural and logical definition in the context of the problem; part-of-

speech information can only be found by examining the first character

of the grammar code. D-6, in effect, equates the term "part-of-

speech" with a particular character position within the machine word

"grammar-code". This is merely an extension of the practice of

symbolic naming that is common in symbolic assembly programs.

Since the machine word "grammar-code" contains distinct, nameable

pieces of information in different character positions, these pieces

can each be given a single distinct name in terms of their character

positions. It is easier to talk about "case", "number", and "gender",

than to refer to the same information as "position-3 of the grammar-

code", position-4 of the grammar-code", etc.

The definitional statement above creates a slightly different

type of dictionary entry from that of our previous definitions. ''Part-

of-speech" is still given only one primary classification and meaning.

Like "grammar-code", it is classed as an item-specifying symbol

and has the same primary meaning as "grammar-code". In addition,

however, it is allowed to imply the meaning assigned to the masking

symbol "position-1" if the context of the particular statement warrants

it. That is, whenever the word "part-of-speech" occurs in a state-

ment, it always and unconditionally specifies item "grammar-code";

457

Session 10: PROGRAMMING

it will also specify the masking symbol "position-1" provided that the

statement does not contain an explicit masking symbol. In other

words, the relationship established by the definition D-6 between the

term "part-of-speech" and "position-1" is conditional; "part-of-speech"

implies "position-1" on the condition that no other masking symbol

explicitly occurs in the same statement. But the relationship which

D-6 establishes between the terms "part-of-speech" and "grammar-

code" is unconditional; "part-of-speech" always specifies the item-

symbol "grammar-code". The conditional nature of implied defini-

tions allows the programmer to override them, when this is useful,

by putting explicit symbols of the same class in his statement. This

ability to override is not useful in this example, but let us now re-

define "part-of-speech" as follows:

D-7 DEFINE PART-OF-SPEECH AS POSITION-1 OF GRAMMAR-

CODE OF THIS-WORD.

"Part-of-speech" now contains two implied symbols; namely, a

masking symbol "position-1", and an index symbol "this-word".

"This-word" is a variable that can be evaluated only when the pseudo-

code is being executed by the Interpreter. At that time it successively

assumes the values of a current-word counter that steps through each

word of the sentence being translated. Since so many of the statements

specify tests on the current-word, it is convenient to avoid writing

"this-word" each time; D-7 allows us to do so, since "part-of-speech"

now implies that we are referring to the part-of-speech of the current

word. Hence we can shorten J-3 by:

J-4 IF PART-OF-SPEECH = NOUN, GO-TO K-l.

When, however, we wish to test a word in the sentence that is

structurally related to the current word, we can override the implied

index symbol by specifying one explicitly in our statement:

J-5 IF PART-OF-SPEECH OF GOVERNOR = NOUN, GO-TO K-l.

Here "governor" is defined by:

D-8 DEFINE GOVERNOR AS INDEX-05.

458

Session 10: PROGRAMMING

Again, D-8 merely enters the term "governor" in the Transla-

tor's dictionary, classifying it as an index symbol and assigning it

the meaning "05"; if the Interpreter is to execute the statement

correctly, the 5th name on its list of index-setting subroutines must

refer to a subroutine that will point to the syntactic governor of the

current word. Since a word has only one governor, J-5 results in

only one test. A word may have several dependents, however, either

preceding or following it in the sentence. We may wish to write:

 J-6 IF PART-OF-SPEECH OF PRECEDING-DEPENDENT = NOUN,

 GO-TO K-l.

Here "preceding-dependent" is defined by:

 D-9 DEFINE PRECEDING-DEPENDENT AS INDEX-06.

J-6 may result in several tests, since all preceding dependents

of the current word must be examined until either a noun is located,

or all preceding dependents of the current word have failed the test.

The Interpreter executes J-6 iteratively, using, as different values

for the term "preceding-dependent", those values which the 6th

index-setting routine supplies. The ability to write statements that

specify both a structural relationship and grammatic qualities as

conditions is expected to be especially useful in writing programs for

post-translation analysis of corrected text.

Returning to the concept of implication, consider the two

sentences

"The color of his eyes was blue."

and

"His eyes were blue."

The first sentence explicitly names which feature of the eyes is being

described; namely, color. The second sentence implies the same in-

formation in the word "blue", and is somewhat less stilted. The

MIMIC statements we have been considering resemble the first sen-

tence; the feature being tested has been stated explicitly. The ability

to imply this information would not only make the statements more

natural, but would save repetitious writing. Let us change the defini-

tion of the word "noun" from D-2 to;

459

Session 10: PROGRAMMING

D-10 DEFINE NOUN AS PART-OF-SPEECH = 2 .

D-11 DEFINE NOUN AS POSITION-1 OF GRAMMAR-CODE OF

THIS-WORD = 2.

The dictionary entry for the word "noun" is now carrying the

burden of detail, and the programmer can write such cryptic state-

ments as:

J-7 IF GOVERNOR = NOUN, GO-TO K-l. (EQUIVALENT TO J-5)

J-8 IF PRECEDING-DEPENDENT = NOUN, GO-TO K-l.

(EQUIVALENT TO J-6.)

Unfortunately, the present format of the dictionary entry does not

provide space to define a value and, at the same time, to imply an

item, a mask, and an index. It does provide space for an implicit

item and mask, however. Implicit masking symbols have already

been incorporated; implicit item-symbols will be added.

Between 6 and 7 man-months have been spent on the design,

programming, and check-out of the MIMIC system; and it is currently

being used to construct English sentences in the Russian-English

translation routine. If, as expected, the system is to be used for

analysis of postedited text, certain action subroutines for tallying,

sorting, listing, and similar operations, will probably be added to the

Interpreter in machine language. The ability to write action sub-

routines in MIMIC statements has recently been added but needs re-

finement before it will be of real value.

Clearly, there has been an attempt to make the system easy

to use, in the hope that non-programmers could master it with a

little training. It is too early to predict whether this generally will

be the case, although one such person has written several routines

correctly in the system.

Interpretive systems are somewhat unappealing, and for some

problems even unacceptable, because by nature they are less efficient

in machine time. We have no measure of MIMIC's efficiency at

present, but we expect it to be tolerable; the routines for which it will

be used are characterized by having many branches, only one of which

is selected for a given word. The machine-language codes for inflec-

tion and insertion consumed less than 10 percent of the total internal

460

Session 10: PROGRAMMING

machine time for the Russian-English translation, but a much higher

percentage of total available programming time. At this stage of

research, we are inclined to speculate that the ability to mechanize

five algorithms less efficiently will produce linguistic progress faster

than the ability to mechanize one of them optimally.

461

