Computational Linguistics, Volume 44, Issue 3 - September 2018

Anthology ID:
Cambridge, MA
MIT Press
Bib Export formats:

Computational Linguistics, Volume 44, Issue 3 - September 2018

pdf bib
Obituary: Aravind K. Joshi
Bonnie Webber

pdf bib
A Structured Review of the Validity of BLEU
Ehud Reiter

The BLEU metric has been widely used in NLP for over 15 years to evaluate NLP systems, especially in machine translation and natural language generation. I present a structured review of the evidence on whether BLEU is a valid evaluation technique—in other words, whether BLEU scores correlate with real-world utility and user-satisfaction of NLP systems; this review covers 284 correlations reported in 34 papers. Overall, the evidence supports using BLEU for diagnostic evaluation of MT systems (which is what it was originally proposed for), but does not support using BLEU outside of MT, for evaluation of individual texts, or for scientific hypothesis testing.

Native Language Identification With Classifier Stacking and Ensembles
Shervin Malmasi | Mark Dras

Ensemble methods using multiple classifiers have proven to be among the most successful approaches for the task of Native Language Identification (NLI), achieving the current state of the art. However, a systematic examination of ensemble methods for NLI has yet to be conducted. Additionally, deeper ensemble architectures such as classifier stacking have not been closely evaluated. We present a set of experiments using three ensemble-based models, testing each with multiple configurations and algorithms. This includes a rigorous application of meta-classification models for NLI, achieving state-of-the-art results on several large data sets, evaluated in both intra-corpus and cross-corpus modes.

On the Complexity of CCG Parsing
Marco Kuhlmann | Giorgio Satta | Peter Jonsson

We study the parsing complexity of Combinatory Categorial Grammar (CCG) in the formalism of Vijay-Shanker and Weir (1994). As our main result, we prove that any parsing algorithm for this formalism will take in the worst case exponential time when the size of the grammar, and not only the length of the input sentence, is included in the analysis. This sets the formalism of Vijay-Shanker and Weir (1994) apart from weakly equivalent formalisms such as Tree Adjoining Grammar, for which parsing can be performed in time polynomial in the combined size of grammar and input sentence. Our results contribute to a refined understanding of the class of mildly context-sensitive grammars, and inform the search for new, mildly context-sensitive versions of CCG.

Using Semantics for Granularities of Tokenization
Martin Riedl | Chris Biemann

Depending on downstream applications, it is advisable to extend the notion of tokenization from low-level character-based token boundary detection to identification of meaningful and useful language units. This entails both identifying units composed of several single words that form a several single words that form a, as well as splitting single-word compounds into their meaningful parts. In this article, we introduce unsupervised and knowledge-free methods for these two tasks. The main novelty of our research is based on the fact that methods are primarily based on distributional similarity, of which we use two flavors: a sparse count-based and a dense neural-based distributional semantic model. First, we introduce DRUID, which is a method for detecting MWEs. The evaluation on MWE-annotated data sets in two languages and newly extracted evaluation data sets for 32 languages shows that DRUID compares favorably over previous methods not utilizing distributional information. Second, we present SECOS, an algorithm for decompounding close compounds. In an evaluation of four dedicated decompounding data sets across four languages and on data sets extracted from Wiktionary for 14 languages, we demonstrate the superiority of our approach over unsupervised baselines, sometimes even matching the performance of previous language-specific and supervised methods. In a final experiment, we show how both decompounding and MWE information can be used in information retrieval. Here, we obtain the best results when combining word information with MWEs and the compound parts in a bag-of-words retrieval set-up. Overall, our methodology paves the way to automatic detection of lexical units beyond standard tokenization techniques without language-specific preprocessing steps such as POS tagging.

Feature-Based Decipherment for Machine Translation
Iftekhar Naim | Parker Riley | Daniel Gildea

Orthographic similarities across languages provide a strong signal for unsupervised probabilistic transduction (decipherment) for closely related language pairs. The existing decipherment models, however, are not well suited for exploiting these orthographic similarities. We propose a log-linear model with latent variables that incorporates orthographic similarity features. Maximum likelihood training is computationally expensive for the proposed log-linear model. To address this challenge, we perform approximate inference via Markov chain Monte Carlo sampling and contrastive divergence. Our results show that the proposed log-linear model with contrastive divergence outperforms the existing generative decipherment models by exploiting the orthographic features. The model both scales to large vocabularies and preserves accuracy in low- and no-resource contexts.

Survey: Anaphora With Non-nominal Antecedents in Computational Linguistics: a Survey
Varada Kolhatkar | Adam Roussel | Stefanie Dipper | Heike Zinsmeister

This article provides an extensive overview of the literature related to the phenomenon of non-nominal-antecedent anaphora (also known as abstract anaphora or discourse deixis), a type of anaphora in which an anaphor like “that” refers to an antecedent (marked in boldface) that is syntactically non-nominal, such as the first sentence in “It’s way too hot here. That’s why I’m moving to Alaska.” Annotating and automatically resolving these cases of anaphora is interesting in its own right because of the complexities involved in identifying non-nominal antecedents, which typically represent abstract objects such as events, facts, and propositions. There is also practical value in the resolution of non-nominal-antecedent anaphora, as this would help computational systems in machine translation, summarization, and question answering, as well as, conceivably, any other task dependent on some measure of text understanding. Most of the existing approaches to anaphora annotation and resolution focus on nominal-antecedent anaphora, classifying many of the cases where the antecedents are syntactically non-nominal as non-anaphoric. There has been some work done on this topic, but it remains scattered and difficult to collect and assess. With this article, we hope to bring together and synthesize work done in disparate contexts up to now in order to identify fundamental problems and draw conclusions from an overarching perspective. Having a good picture of the current state of the art in this field can help researchers direct their efforts to where they are most necessary. Because of the great variety of theoretical approaches that have been brought to bear on the problem, there is an equally diverse array of terminologies that are used to describe it, so we will provide an overview and discussion of these terminologies. We also describe the linguistic properties of non-nominal-antecedent anaphora, examine previous annotation efforts that have addressed this topic, and present the computational approaches that aim at resolving non-nominal-antecedent anaphora automatically. We close with a review of the remaining open questions in this area and some of our recommendations for future research.