Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP

Tatiana Shavrina, Vladislav Mikhailov, Valentin Malykh, Ekaterina Artemova, Oleg Serikov, Vitaly Protasov (Editors)


Anthology ID:
2022.nlppower-1
Month:
May
Year:
2022
Address:
Dublin, Ireland
Venue:
nlppower
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2022.nlppower-1
DOI:
Bib Export formats:
BibTeX
PDF:
https://preview.aclanthology.org/ingestion-script-update/2022.nlppower-1.pdf

pdf bib
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP
Tatiana Shavrina | Vladislav Mikhailov | Valentin Malykh | Ekaterina Artemova | Oleg Serikov | Vitaly Protasov

pdf bib
Raison d’être of the benchmark dataset: A Survey of Current Practices of Benchmark Dataset Sharing Platforms
Jaihyun Park | Sullam Jeoung

This paper critically examines the current practices of benchmark dataset sharing in NLP and suggests a better way to inform reusers of the benchmark dataset. As the dataset sharing platform plays a key role not only in distributing the dataset but also in informing the potential reusers about the dataset, we believe data-sharing platforms should provide a comprehensive context of the datasets. We survey four benchmark dataset sharing platforms: HuggingFace, PaperswithCode, Tensorflow, and Pytorch to diagnose the current practices of how the dataset is shared which metadata is shared and omitted. To be specific, drawing on the concept of data curation which considers the future reuse when the data is made public, we advance the direction that benchmark dataset sharing platforms should take into consideration. We identify that four benchmark platforms have different practices of using metadata and there is a lack of consensus on what social impact metadata is. We believe the problem of missing a discussion around social impact in the dataset sharing platforms has to do with the failed agreement on who should be in charge. We propose that the benchmark dataset should develop social impact metadata and data curator should take a role in managing the social impact metadata.

pdf bib
Towards Stronger Adversarial Baselines Through Human-AI Collaboration
Wencong You | Daniel Lowd

Natural language processing (NLP) systems are often used for adversarial tasks such as detecting spam, abuse, hate speech, and fake news. Properly evaluating such systems requires dynamic evaluation that searches for weaknesses in the model, rather than a static test set. Prior work has evaluated such models on both manually and automatically generated examples, but both approaches have limitations: manually constructed examples are time-consuming to create and are limited by the imagination and intuition of the creators, while automatically constructed examples are often ungrammatical or labeled inconsistently. We propose to combine human and AI expertise in generating adversarial examples, benefiting from humans’ expertise in language and automated attacks’ ability to probe the target system more quickly and thoroughly. We present a system that facilitates attack construction, combining human judgment with automated attacks to create better attacks more efficiently. Preliminary results from our own experimentation suggest that human-AI hybrid attacks are more effective than either human-only or AI-only attacks. A complete user study to validate these hypotheses is still pending.

pdf
Benchmarking for Public Health Surveillance tasks on Social Media with a Domain-Specific Pretrained Language Model
Usman Naseem | Byoung Chan Lee | Matloob Khushi | Jinman Kim | Adam Dunn

A user-generated text on social media enables health workers to keep track of information, identify possible outbreaks, forecast disease trends, monitor emergency cases, and ascertain disease awareness and response to official health correspondence. This exchange of health information on social media has been regarded as an attempt to enhance public health surveillance (PHS). Despite its potential, the technology is still in its early stages and is not ready for widespread application. Advancements in pretrained language models (PLMs) have facilitated the development of several domain-specific PLMs and a variety of downstream applications. However, there are no PLMs for social media tasks involving PHS. We present and release PHS-BERT, a transformer-based PLM, to identify tasks related to public health surveillance on social media. We compared and benchmarked the performance of PHS-BERT on 25 datasets from different social medial platforms related to 7 different PHS tasks. Compared with existing PLMs that are mainly evaluated on limited tasks, PHS-BERT achieved state-of-the-art performance on all 25 tested datasets, showing that our PLM is robust and generalizable in the common PHS tasks. By making PHS-BERT available, we aim to facilitate the community to reduce the computational cost and introduce new baselines for future works across various PHS-related tasks.

pdf
Why only Micro-F1? Class Weighting of Measures for Relation Classification
David Harbecke | Yuxuan Chen | Leonhard Hennig | Christoph Alt

Relation classification models are conventionally evaluated using only a single measure, e.g., micro-F1, macro-F1 or AUC. In this work, we analyze weighting schemes, such as micro and macro, for imbalanced datasets. We introduce a framework for weighting schemes, where existing schemes are extremes, and two new intermediate schemes. We show that reporting results of different weighting schemes better highlights strengths and weaknesses of a model.

pdf
Automatically Discarding Straplines to Improve Data Quality for Abstractive News Summarization
Amr Keleg | Matthias Lindemann | Danyang Liu | Wanqiu Long | Bonnie L. Webber

Recent improvements in automatic news summarization fundamentally rely on large corpora of news articles and their summaries. These corpora are often constructed by scraping news websites, which results in including not only summaries but also other kinds of texts. Apart from more generic noise, we identify straplines as a form of text scraped from news websites that commonly turn out not to be summaries. The presence of these non-summaries threatens the validity of scraped corpora as benchmarks for news summarization. We have annotated extracts from two news sources that form part of the Newsroom corpus (Grusky et al., 2018), labeling those which were straplines, those which were summaries, and those which were both. We present a rule-based strapline detection method that achieves good performance on a manually annotated test set. Automatic evaluation indicates that removing straplines and noise from the training data of a news summarizer results in higher quality summaries, with improvements as high as 7 points ROUGE score.

pdf
A global analysis of metrics used for measuring performance in natural language processing
Kathrin Blagec | Georg Dorffner | Milad Moradi | Simon Ott | Matthias Samwald

Measuring the performance of natural language processing models is challenging. Traditionally used metrics, such as BLEU and ROUGE, originally devised for machine translation and summarization, have been shown to suffer from low correlation with human judgment and a lack of transferability to other tasks and languages. In the past 15 years, a wide range of alternative metrics have been proposed. However, it is unclear to what extent this has had an impact on NLP benchmarking efforts. Here we provide the first large-scale cross-sectional analysis of metrics used for measuring performance in natural language processing. We curated, mapped and systematized more than 3500 machine learning model performance results from the open repository ‘Papers with Code’ to enable a global and comprehensive analysis. Our results suggest that the large majority of natural language processing metrics currently used have properties that may result in an inadequate reflection of a models’ performance. Furthermore, we found that ambiguities and inconsistencies in the reporting of metrics may lead to difficulties in interpreting and comparing model performances, impairing transparency and reproducibility in NLP research.

pdf
Beyond Static models and test sets: Benchmarking the potential of pre-trained models across tasks and languages
Kabir Ahuja | Sandipan Dandapat | Sunayana Sitaram | Monojit Choudhury

Although recent Massively Multilingual Language Models (MMLMs) like mBERT and XLMR support around 100 languages, most existing multilingual NLP benchmarks provide evaluation data in only a handful of these languages with little linguistic diversity. We argue that this makes the existing practices in multilingual evaluation unreliable and does not provide a full picture of the performance of MMLMs across the linguistic landscape. We propose that the recent work done in Performance Prediction for NLP tasks can serve as a potential solution in fixing benchmarking in Multilingual NLP by utilizing features related to data and language typology to estimate the performance of an MMLM on different languages. We compare performance prediction with translating test data with a case study on four different multilingual datasets, and observe that these methods can provide reliable estimates of the performance that are often on-par with the translation based approaches, without the need for any additional translation as well as evaluation costs.

pdf
Checking HateCheck: a cross-functional analysis of behaviour-aware learning for hate speech detection
Pedro Henrique Luz de Araujo | Benjamin Roth

Behavioural testing—verifying system capabilities by validating human-designed input-output pairs—is an alternative evaluation method of natural language processing systems proposed to address the shortcomings of the standard approach: computing metrics on held-out data. While behavioural tests capture human prior knowledge and insights, there has been little exploration on how to leverage them for model training and development. With this in mind, we explore behaviour-aware learning by examining several fine-tuning schemes using HateCheck, a suite of functional tests for hate speech detection systems. To address potential pitfalls of training on data originally intended for evaluation, we train and evaluate models on different configurations of HateCheck by holding out categories of test cases, which enables us to estimate performance on potentially overlooked system properties. The fine-tuning procedure led to improvements in the classification accuracy of held-out functionalities and identity groups, suggesting that models can potentially generalise to overlooked functionalities. However, performance on held-out functionality classes and i.i.d. hate speech detection data decreased, which indicates that generalisation occurs mostly across functionalities from the same class and that the procedure led to overfitting to the HateCheck data distribution.

pdf
Language Invariant Properties in Natural Language Processing
Federico Bianchi | Debora Nozza | Dirk Hovy

Meaning is context-dependent, but many properties of language (should) remain the same even if we transform the context. For example, sentiment or speaker properties should be the same in a translation and original of a text. We introduce language invariant properties: i.e., properties that should not change when we transform text, and how they can be used to quantitatively evaluate the robustness of transformation algorithms. Language invariant properties can be used to define novel benchmarks to evaluate text transformation methods. In our work we use translation and paraphrasing as examples, but our findings apply more broadly to any transformation. Our results indicate that many NLP transformations change properties. We additionally release a tool as a proof of concept to evaluate the invariance of transformation applications.

pdf
DACT-BERT: Differentiable Adaptive Computation Time for an Efficient BERT Inference
Cristobal Eyzaguirre | Felipe del Rio | Vladimir Araujo | Alvaro Soto

Large-scale pre-trained language models have shown remarkable results in diverse NLP applications. However, these performance gains have been accompanied by a significant increase in computation time and model size, stressing the need to develop new or complementary strategies to increase the efficiency of these models. This paper proposes DACT-BERT, a differentiable adaptive computation time strategy for BERT-like models. DACT-BERT adds an adaptive computational mechanism to BERT’s regular processing pipeline, which controls the number of Transformer blocks that need to be executed at inference time. By doing this, the model learns to combine the most appropriate intermediate representations for the task at hand. Our experiments demonstrate that our approach, when compared to the baselines, excels on a reduced computational regime and is competitive in other less restrictive ones. Code available at https://github.com/ceyzaguirre4/dact_bert.

pdf
Benchmarking Post-Hoc Interpretability Approaches for Transformer-based Misogyny Detection
Giuseppe Attanasio | Debora Nozza | Eliana Pastor | Dirk Hovy

Transformer-based Natural Language Processing models have become the standard for hate speech detection. However, the unconscious use of these techniques for such a critical task comes with negative consequences. Various works have demonstrated that hate speech classifiers are biased. These findings have prompted efforts to explain classifiers, mainly using attribution methods. In this paper, we provide the first benchmark study of interpretability approaches for hate speech detection. We cover four post-hoc token attribution approaches to explain the predictions of Transformer-based misogyny classifiers in English and Italian. Further, we compare generated attributions to attention analysis. We find that only two algorithms provide faithful explanations aligned with human expectations. Gradient-based methods and attention, however, show inconsistent outputs, making their value for explanations questionable for hate speech detection tasks.

pdf
Characterizing the Efficiency vs. Accuracy Trade-off for Long-Context NLP Models
Phyllis Ang | Bhuwan Dhingra | Lisa Wu Wills

With many real-world applications of Natural Language Processing (NLP) comprising of long texts, there has been a rise in NLP benchmarks that measure the accuracy of models that can handle longer input sequences. However, these benchmarks do not consider the trade-offs between accuracy, speed, and power consumption as input sizes or model sizes are varied. In this work, we perform a systematic study of this accuracy vs. efficiency trade-off on two widely used long-sequence models - Longformer-Encoder-Decoder (LED) and Big Bird - during fine-tuning and inference on four datasets from the SCROLLS benchmark. To study how this trade-off differs across hyperparameter settings, we compare the models across four sequence lengths (1024, 2048, 3072, 4096) and two model sizes (base and large) under a fixed resource budget. We find that LED consistently achieves better accuracy at lower energy costs than Big Bird. For summarization, we find that increasing model size is more energy efficient than increasing sequence length for higher accuracy. However, this comes at the cost of a large drop in inference speed. For question answering, we find that smaller models are both more efficient and more accurate due to the larger training batch sizes possible under a fixed resource budget.