Proceedings of the 4th Workshop on NLP for Conversational AI

Bing Liu, Alexandros Papangelis, Stefan Ultes, Abhinav Rastogi, Yun-Nung Chen, Georgios Spithourakis, Elnaz Nouri, Weiyan Shi (Editors)


Anthology ID:
2022.nlp4convai-1
Month:
May
Year:
2022
Address:
Dublin, Ireland
Venue:
NLP4ConvAI
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2022.nlp4convai-1
DOI:
Bib Export formats:
BibTeX
PDF:
https://preview.aclanthology.org/ingestion-script-update/2022.nlp4convai-1.pdf

pdf bib
Proceedings of the 4th Workshop on NLP for Conversational AI
Bing Liu | Alexandros Papangelis | Stefan Ultes | Abhinav Rastogi | Yun-Nung Chen | Georgios Spithourakis | Elnaz Nouri | Weiyan Shi

pdf bib
A Randomized Link Transformer for Diverse Open-Domain Dialogue Generation
Jing Yang Lee | Kong Aik Lee | Woon Seng Gan

A major issue in open-domain dialogue generation is the agent’s tendency to generate repetitive and generic responses. The lack in response diversity has been addressed in recent years via the use of latent variable models, such as the Conditional Variational Auto-Encoder (CVAE), which typically involve learning a latent Gaussian distribution over potential response intents. However, due to latent variable collapse, training latent variable dialogue models are notoriously complex, requiring substantial modification to the standard training process and loss function. Other approaches proposed to improve response diversity also largely entail a significant increase in training complexity. Hence, this paper proposes a Randomized Link (RL) Transformer as an alternative to the latent variable models. The RL Transformer does not require any additional enhancements to the training process or loss function. Empirical results show that, when it comes to response diversity, the RL Transformer achieved comparable performance compared to latent variable models.

pdf bib
Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection
Jianguo Zhang | Kazuma Hashimoto | Yao Wan | Zhiwei Liu | Ye Liu | Caiming Xiong | Philip Yu

Pre-trained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of pre-trained Transformer-based models against samples that are in-domain but out-of-scope (ID-OOS). We construct two new datasets, and empirically show that pre-trained models do not perform well on both ID-OOS examples and general out-of-scope examples, especially on fine-grained few-shot intent detection tasks.

pdf
Conversational AI for Positive-sum Retailing under Falsehood Control
Yin-Hsiang Liao | Ruo-Ping Dong | Huan-Cheng Chang | Wilson Ma

Retailing combines complicated communication skills and strategies to reach an agreement between buyer and seller with identical or different goals. In each transaction a good seller finds an optimal solution by considering his/her own profits while simultaneously considering whether the buyer’s needs have been met. In this paper, we manage the retailing problem by mixing cooperation and competition. We present a rich dataset of buyer-seller bargaining in a simulated marketplace in which each agent values goods and utility separately. Various attributes (preference, quality, and profit) are initially hidden from one agent with respect to its role; during the conversation, both sides may reveal, fake, or retain the information uncovered to come to a final decision through natural language. Using this dataset, we leverage transfer learning techniques on a pretrained, end-to-end model and enhance its decision-making ability toward the best choice in terms of utility by means of multi-agent reinforcement learning. An automatic evaluation shows that our approach results in more optimal transactions than human does. We also show that our framework controls the falsehoods generated by seller agents.

pdf
D-REX: Dialogue Relation Extraction with Explanations
Alon Albalak | Varun Embar | Yi-Lin Tuan | Lise Getoor | William Yang Wang

Existing research studies on cross-sentence relation extraction in long-form multi-party conversations aim to improve relation extraction without considering the explainability of such methods. This work addresses that gap by focusing on extracting explanations that indicate that a relation exists while using only partially labeled explanations. We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that optimizes for explanation quality and relation extraction simultaneously. We frame relation extraction as a re-ranking task and include relation- and entity-specific explanations as an intermediate step of the inference process. We find that human annotators are 4.2 times more likely to prefer D-REX’s explanations over a joint relation extraction and explanation model. Finally, our evaluations show that D-REX is simple yet effective and improves relation extraction performance of strong baseline models by 1.2-4.7%.

pdf
Data Augmentation for Intent Classification with Off-the-shelf Large Language Models
Gaurav Sahu | Pau Rodriguez | Issam Laradji | Parmida Atighehchian | David Vazquez | Dzmitry Bahdanau

Data augmentation is a widely employed technique to alleviate the problem of data scarcity. In this work, we propose a prompting-based approach to generate labelled training data for intent classification with off-the-shelf language models (LMs) such as GPT-3. An advantage of this method is that no task-specific LM-fine-tuning for data generation is required; hence the method requires no hyper parameter tuning and is applicable even when the available training data is very scarce. We evaluate the proposed method in a few-shot setting on four diverse intent classification tasks. We find that GPT-generated data significantly boosts the performance of intent classifiers when intents in consideration are sufficiently distinct from each other. In tasks with semantically close intents, we observe that the generated data is less helpful. Our analysis shows that this is because GPT often generates utterances that belong to a closely-related intent instead of the desired one. We present preliminary evidence that a prompting-based GPT classifier could be helpful in filtering the generated data to enhance its quality.

pdf
Extracting and Inferring Personal Attributes from Dialogue
Zhilin Wang | Xuhui Zhou | Rik Koncel-Kedziorski | Alex Marin | Fei Xia

Personal attributes represent structured information about a person, such as their hobbies, pets, family, likes and dislikes. We introduce the tasks of extracting and inferring personal attributes from human-human dialogue, and analyze the linguistic demands of these tasks. To meet these challenges, we introduce a simple and extensible model that combines an autoregressive language model utilizing constrained attribute generation with a discriminative reranker. Our model outperforms strong baselines on extracting personal attributes as well as inferring personal attributes that are not contained verbatim in utterances and instead requires commonsense reasoning and lexical inferences, which occur frequently in everyday conversation. Finally, we demonstrate the benefit of incorporating personal attributes in social chit-chat and task-oriented dialogue settings.

pdf
From Rewriting to Remembering: Common Ground for Conversational QA Models
Marco Del Tredici | Xiaoyu Shen | Gianni Barlacchi | Bill Byrne | Adrià de Gispert

In conversational QA, models have to leverage information in previous turns to answer upcoming questions. Current approaches, such as Question Rewriting, struggle to extract relevant information as the conversation unwinds. We introduce the Common Ground (CG), an approach to accumulate conversational information as it emerges and select the relevant information at every turn. We show that CG offers a more efficient and human-like way to exploit conversational information compared to existing approaches, leading to improvements on Open Domain Conversational QA.

pdf
Human Evaluation of Conversations is an Open Problem: comparing the sensitivity of various methods for evaluating dialogue agents
Eric Smith | Orion Hsu | Rebecca Qian | Stephen Roller | Y-Lan Boureau | Jason Weston

At the heart of improving conversational AI is the open problem of how to evaluate conversations. Issues with automatic metrics are well known (Liu et al., 2016), with human evaluations still considered the gold standard. Unfortunately, how to perform human evaluations is also an open problem: differing data collection methods have varying levels of human agreement and statistical sensitivity, resulting in differing amounts of human annotation hours and labor costs. In this work we compare five different crowdworker-based human evaluation methods and find that different methods are best depending on the types of models compared, with no clear winner across the board. While this highlights the open problems in the area, our analysis leads to advice of when to use which one, and possible future directions.

pdf
KG-CRuSE: Recurrent Walks over Knowledge Graph for Explainable Conversation Reasoning using Semantic Embeddings
Rajdeep Sarkar | Mihael Arcan | John McCrae

Knowledge-grounded dialogue systems utilise external knowledge such as knowledge graphs to generate informative and appropriate responses. A crucial challenge of such systems is to select facts from a knowledge graph pertinent to the dialogue context for response generation. This fact selection can be formulated as path traversal over a knowledge graph conditioned on the dialogue context. Such paths can originate from facts mentioned in the dialogue history and terminate at the facts to be mentioned in the response. These walks, in turn, provide an explanation of the flow of the conversation. This work proposes KG-CRuSE, a simple, yet effective LSTM based decoder that utilises the semantic information in the dialogue history and the knowledge graph elements to generate such paths for effective conversation explanation. Extensive evaluations showed that our model outperforms the state-of-the-art models on the OpenDialKG dataset on multiple metrics.

pdf
Knowledge Distillation Meets Few-Shot Learning: An Approach for Few-Shot Intent Classification Within and Across Domains
Anna Sauer | Shima Asaadi | Fabian Küch

Large Transformer-based natural language understanding models have achieved state-of-the-art performance in dialogue systems. However, scarce labeled data for training, the large model size, and low inference speed hinder their deployment in low-resource scenarios. Few-shot learning and knowledge distillation techniques have been introduced to reduce the need for labeled data and computational resources, respectively. However, these techniques are incompatible because few-shot learning trains models using few data, whereas, knowledge distillation requires sufficient data to train smaller, yet competitive models that run on limited computational resources. In this paper, we address the problem of distilling generalizable small models under the few-shot setting for the intent classification task. Considering in-domain and cross-domain few-shot learning scenarios, we introduce an approach for distilling small models that generalize to new intent classes and domains using only a handful of labeled examples. We conduct experiments on public intent classification benchmarks, and observe a slight performance gap between small models and large Transformer-based models. Overall, our results in both few-shot scenarios confirm the generalization ability of the small distilled models while having lower computational costs.

pdf
MTL-SLT: Multi-Task Learning for Spoken Language Tasks
Zhiqi Huang | Milind Rao | Anirudh Raju | Zhe Zhang | Bach Bui | Chul Lee

Language understanding in speech-based systems has attracted extensive interest from both academic and industrial communities in recent years with the growing demand for voice-based applications. Prior works focus on independent research by the automatic speech recognition (ASR) and natural language processing (NLP) communities, or on jointly modeling the speech and NLP problems focusing on a single dataset or single NLP task. To facilitate the development of spoken language research, we introduce MTL-SLT, a multi-task learning framework for spoken language tasks. MTL-SLT takes speech as input, and outputs transcription, intent, named entities, summaries, and answers to text queries, supporting the tasks of spoken language understanding, spoken summarization and spoken question answering respectively. The proposed framework benefits from three key aspects: 1) pre-trained sub-networks of ASR model and language model; 2) multi-task learning objective to exploit shared knowledge from different tasks; 3) end-to-end training of ASR and downstream NLP task based on sequence loss. We obtain state-of-the-art results on spoken language understanding tasks such as SLURP and ATIS. Spoken summarization results are reported on a new dataset: Spoken-Gigaword.

pdf
Multimodal Conversational AI: A Survey of Datasets and Approaches
Anirudh Sundar | Larry Heck

As humans, we experience the world with all our senses or modalities (sound, sight, touch, smell, and taste). We use these modalities, particularly sight and touch, to convey and interpret specific meanings. Multimodal expressions are central to conversations; a rich set of modalities amplify and often compensate for each other. A multimodal conversational AI system answers questions, fulfills tasks, and emulates human conversations by understanding and expressing itself via multiple modalities. This paper motivates, defines, and mathematically formulates the multimodal conversational research objective. We provide a taxonomy of research required to solve the objective: multimodal representation, fusion, alignment, translation, and co-learning. We survey state-of-the-art datasets and approaches for each research area and highlight their limiting assumptions. Finally, we identify multimodal co-learning as a promising direction for multimodal conversational AI research.

pdf
Open-domain Dialogue Generation: What We Can Do, Cannot Do, And Should Do Next
Katharina Kann | Abteen Ebrahimi | Joewie Koh | Shiran Dudy | Alessandro Roncone

Human–computer conversation has long been an interest of artificial intelligence and natural language processing research. Recent years have seen a dramatic improvement in quality for both task-oriented and open-domain dialogue systems, and an increasing amount of research in the area. The goal of this work is threefold: (1) to provide an overview of recent advances in the field of open-domain dialogue, (2) to summarize issues related to ethics, bias, and fairness that the field has identified as well as typical errors of dialogue systems, and (3) to outline important future challenges. We hope that this work will be of interest to both new and experienced researchers in the area.

pdf
Relevance in Dialogue: Is Less More? An Empirical Comparison of Existing Metrics, and a Novel Simple Metric
Ian Berlot-Attwell | Frank Rudzicz

In this work, we evaluate various existing dialogue relevance metrics, find strong dependency on the dataset, often with poor correlation with human scores of relevance, and propose modifications to reduce data requirements and domain sensitivity while improving correlation. Our proposed metric achieves state-of-the-art performance on the HUMOD dataset while reducing measured sensitivity to dataset by 37%-66%. We achieve this without fine-tuning a pretrained language model, and using only 3,750 unannotated human dialogues and a single negative example. Despite these limitations, we demonstrate competitive performance on four datasets from different domains. Our code, including our metric and experiments, is open sourced.

pdf
RetroNLU: Retrieval Augmented Task-Oriented Semantic Parsing
Vivek Gupta | Akshat Shrivastava | Adithya Sagar | Armen Aghajanyan | Denis Savenkov

While large pre-trained language models accumulate a lot of knowledge in their parameters, it has been demonstrated that augmenting it with non-parametric retrieval-based memory has a number of benefits ranging from improved accuracy to data efficiency for knowledge-focused tasks such as question answering. In this work, we apply retrieval-based modeling ideas to the challenging complex task of multi-domain task-oriented semantic parsing for conversational assistants. Our technique, RetroNLU, extends a sequence-to-sequence model architecture with a retrieval component, which is used to retrieve existing similar samples and present them as an additional context to the model. In particular, we analyze two settings, where we augment an input with (a) retrieved nearest neighbor utterances (utterance-nn), and (b) ground-truth semantic parses of nearest neighbor utterances (semparse-nn). Our technique outperforms the baseline method by 1.5% absolute macro-F1, especially at the low resource setting, matching the baseline model accuracy with only 40% of the complete data.Furthermore, we analyse the quality, model sensitivity, and performance of the nearest neighbor retrieval component’s for semantic parses of varied utterance complexity.

pdf
Stylistic Response Generation by Controlling Personality Traits and Intent
Sougata Saha | Souvik Das | Rohini Srihari

Personality traits influence human actions and thoughts, which is manifested in day to day conversations. Although glimpses of personality traits are observable in existing open domain conversation corpora, leveraging generic language modelling for response generation overlooks the interlocutor idiosyncrasies, resulting in non-customizable personality agnostic responses. With the motivation of enabling stylistically configurable response generators, in this paper we experiment with end-to-end mechanisms to ground neural response generators based on both (i) interlocutor Big-5 personality traits, and (ii) discourse intent as stylistic control codes. Since most of the existing large scale open domain chat corpora do not include Big-5 personality traits and discourse intent, we employ automatic annotation schemes to enrich the corpora with noisy estimates of personality and intent annotations, and further assess the impact of using such features as control codes for response generation using automatic evaluation metrics, ablation studies and human judgement. Our experiments illustrate the effectiveness of this strategy resulting in improvements to existing benchmarks. Additionally, we yield two silver standard annotated corpora with intents and personality traits annotated, which can be of use to the research community.

pdf
Toward Knowledge-Enriched Conversational Recommendation Systems
Tong Zhang | Yong Liu | Boyang Li | Peixiang Zhong | Chen Zhang | Hao Wang | Chunyan Miao

Conversational Recommendation Systems recommend items through language based interactions with users.In order to generate naturalistic conversations and effectively utilize knowledge graphs (KGs) containing background information, we propose a novel Bag-of-Entities loss, which encourages the generated utterances to mention concepts related to the item being recommended, such as the genre or director of a movie. We also propose an alignment loss to further integrate KG entities into the response generation network. Experiments on the large-scale REDIAL dataset demonstrate that the proposed system consistently outperforms state-of-the-art baselines.

pdf
Understanding and Improving the Exemplar-based Generation for Open-domain Conversation
Seungju Han | Beomsu Kim | Seokjun Seo | Enkhbayar Erdenee | Buru Chang

Exemplar-based generative models for open-domain conversation produce responses based on the exemplars provided by the retriever, taking advantage of generative models and retrieval models. However, due to the one-to-many problem of the open-domain conversation, they often ignore the retrieved exemplars while generating responses or produce responses over-fitted to the retrieved exemplars. To address these advantages, we introduce a training method selecting exemplars that are semantically relevant to the gold response but lexically distanced from the gold response. In the training phase, our training method first uses the gold response instead of dialogue context as a query to select exemplars that are semantically relevant to the gold response. And then, it eliminates the exemplars that lexically resemble the gold responses to alleviate the dependency of the generative models on that exemplars. The remaining exemplars could be irrelevant to the given context since they are searched depending on the gold response. Thus, our training method further utilizes the relevance scores between the given context and the exemplars to penalize the irrelevant exemplars. Extensive experiments demonstrate that our proposed training method alleviates the drawbacks of the existing exemplar-based generative models and significantly improves the performance in terms of appropriateness and informativeness.