Ziyu Yao


2022

pdf
Synthetic Question Value Estimation for Domain Adaptation of Question Answering
Xiang Yue | Ziyu Yao | Huan Sun
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Synthesizing QA pairs with a question generator (QG) on the target domain has become a popular approach for domain adaptation of question answering (QA) models. Since synthetic questions are often noisy in practice, existing work adapts scores from a pretrained QA (or QG) model as criteria to select high-quality questions. However, these scores do not directly serve the ultimate goal of improving QA performance on the target domain. In this paper, we introduce a novel idea of training a question value estimator (QVE) that directly estimates the usefulness of synthetic questions for improving the target-domain QA performance. By conducting comprehensive experiments, we show that the synthetic questions selected by QVE can help achieve better target-domain QA performance, in comparison with existing techniques. We additionally show that by using such questions and only around 15% of the human annotations on the target domain, we can achieve comparable performance to the fully-supervised baselines.

pdf bib
Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)
Wenhu Chen | Xinyun Chen | Zhiyu Chen | Ziyu Yao | Michihiro Yasunaga | Tao Yu | Rui Zhang
Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)

pdf
UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models
Tianbao Xie | Chen Henry Wu | Peng Shi | Ruiqi Zhong | Torsten Scholak | Michihiro Yasunaga | Chien-Sheng Wu | Ming Zhong | Pengcheng Yin | Sida I. Wang | Victor Zhong | Bailin Wang | Chengzu Li | Connor Boyle | Ansong Ni | Ziyu Yao | Dragomir Radev | Caiming Xiong | Lingpeng Kong | Rui Zhang | Noah A. Smith | Luke Zettlemoyer | Tao Yu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.

2021

pdf bib
Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)
Royi Lachmy | Ziyu Yao | Greg Durrett | Milos Gligoric | Junyi Jessy Li | Ray Mooney | Graham Neubig | Yu Su | Huan Sun | Reut Tsarfaty
Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)

2020

pdf
An Imitation Game for Learning Semantic Parsers from User Interaction
Ziyu Yao | Yiqi Tang | Wen-tau Yih | Huan Sun | Yu Su
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks. In this paper, we suggest an alternative, human-in-the-loop methodology for learning semantic parsers directly from users. A semantic parser should be introspective of its uncertainties and prompt for user demonstrations when uncertain. In doing so it also gets to imitate the user behavior and continue improving itself autonomously with the hope that eventually it may become as good as the user in interpreting their questions. To combat the sparsity of demonstrations, we propose a novel annotation-efficient imitation learning algorithm, which iteratively collects new datasets by mixing demonstrated states and confident predictions and retrains the semantic parser in a Dataset Aggregation fashion (Ross et al., 2011). We provide a theoretical analysis of its cost bound and also empirically demonstrate its promising performance on the text-to-SQL problem. Code will be available at https://github.com/sunlab-osu/MISP.

2019

pdf
Reinforced Dynamic Reasoning for Conversational Question Generation
Boyuan Pan | Hao Li | Ziyu Yao | Deng Cai | Huan Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing intelligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage into the general encoder-decoder framework. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.

pdf
Model-based Interactive Semantic Parsing: A Unified Framework and A Text-to-SQL Case Study
Ziyu Yao | Yu Su | Huan Sun | Wen-tau Yih
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

As a promising paradigm, interactive semantic parsing has shown to improve both semantic parsing accuracy and user confidence in the results. In this paper, we propose a new, unified formulation of the interactive semantic parsing problem, where the goal is to design a model-based intelligent agent. The agent maintains its own state as the current predicted semantic parse, decides whether and where human intervention is needed, and generates a clarification question in natural language. A key part of the agent is a world model: it takes a percept (either an initial question or subsequent feedback from the user) and transitions to a new state. We then propose a simple yet remarkably effective instantiation of our framework, demonstrated on two text-to-SQL datasets (WikiSQL and Spider) with different state-of-the-art base semantic parsers. Compared to an existing interactive semantic parsing approach that treats the base parser as a black box, our approach solicits less user feedback but yields higher run-time accuracy.