Zi-Yi Dou


2022

pdf
FOAM: A Follower-aware Speaker Model For Vision-and-Language Navigation
Zi-Yi Dou | Nanyun Peng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The speaker-follower models have proven to be effective in vision-and-language navigation, where a speaker model is used to synthesize new instructions to augment the training data for a follower navigation model. However, in previous work, the speaker model is follower-agnostic and fails to take the state of the follower into consideration. In this paper, we present FOAM, a FOllower-Aware speaker Model that is constantly updated given the follower feedback, so that the generated instructions can be more suitable to the current learning state of the follower. Specifically, we optimize the speaker using a bi-level optimization framework and obtain its training signals by evaluating the follower on labeled data. Experimental results on the Room-to-Room and Room-across-Room datasets demonstrate that our methods can outperform strong baseline models across settings. Analyses also reveal that our generated instructions are of higher quality than the baselines.

2021

pdf
Improving Pre-trained Vision-and-Language Embeddings for Phrase Grounding
Zi-Yi Dou | Nanyun Peng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Phrase grounding aims to map textual phrases to their associated image regions, which can be a prerequisite for multimodal reasoning and can benefit tasks requiring identifying objects based on language. With pre-trained vision-and-language models achieving impressive performance across tasks, it remains unclear if we can directly utilize their learned embeddings for phrase grounding without fine-tuning. To this end, we propose a method to extract matched phrase-region pairs from pre-trained vision-and-language embeddings and propose four fine-tuning objectives to improve the model phrase grounding ability using image-caption data without any supervised grounding signals. Experiments on two representative datasets demonstrate the effectiveness of our objectives, outperforming baseline models in both weakly-supervised and supervised phrase grounding settings. In addition, we evaluate the aligned embeddings on several other downstream tasks and show that we can achieve better phrase grounding without sacrificing representation generality.

pdf
Word Alignment by Fine-tuning Embeddings on Parallel Corpora
Zi-Yi Dou | Graham Neubig
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs. The great majority of past work on word alignment has worked by performing unsupervised learning on parallel text. Recently, however, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data. In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing methods to effectively extract alignments from these fine-tuned models. We perform experiments on five language pairs and demonstrate that our model can consistently outperform previous state-of-the-art models of all varieties. In addition, we demonstrate that we are able to train multilingual word aligners that can obtain robust performance on different language pairs.

pdf
RefSum: Refactoring Neural Summarization
Yixin Liu | Zi-Yi Dou | Pengfei Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Although some recent works show potential complementarity among different state-of-the-art systems, few works try to investigate this problem in text summarization. Researchers in other areas commonly refer to the techniques of reranking or stacking to approach this problem. In this work, we highlight several limitations of previous methods, which motivates us to present a new framework Refactor that provides a unified view of text summarization and summaries combination. Experimentally, we perform a comprehensive evaluation that involves twenty-two base systems, four datasets, and three different application scenarios. Besides new state-of-the-art results on CNN/DailyMail dataset (46.18 ROUGE-1), we also elaborate on how our proposed method addresses the limitations of the traditional methods and the effectiveness of the Refactor model sheds light on insight for performance improvement. Our system can be directly used by other researchers as an off-the-shelf tool to achieve further performance improvements. We open-source all the code and provide a convenient interface to use it: https://github.com/yixinL7/Refactoring-Summarization.

pdf
GSum: A General Framework for Guided Neural Abstractive Summarization
Zi-Yi Dou | Pengfei Liu | Hiroaki Hayashi | Zhengbao Jiang | Graham Neubig
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Neural abstractive summarization models are flexible and can produce coherent summaries, but they are sometimes unfaithful and can be difficult to control. While previous studies attempt to provide different types of guidance to control the output and increase faithfulness, it is not clear how these strategies compare and contrast to each other. In this paper, we propose a general and extensible guided summarization framework (GSum) that can effectively take different kinds of external guidance as input, and we perform experiments across several different varieties. Experiments demonstrate that this model is effective, achieving state-of-the-art performance according to ROUGE on 4 popular summarization datasets when using highlighted sentences as guidance. In addition, we show that our guided model can generate more faithful summaries and demonstrate how different types of guidance generate qualitatively different summaries, lending a degree of controllability to the learned models.

2020

pdf
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems
Yiran Chen | Pengfei Liu | Ming Zhong | Zi-Yi Dou | Danqing Wang | Xipeng Qiu | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

Neural network-based models augmented with unsupervised pre-trained knowledge have achieved impressive performance on text summarization. However, most existing evaluation methods are limited to an in-domain setting, where summarizers are trained and evaluated on the same dataset. We argue that this approach can narrow our understanding of the generalization ability for different summarization systems. In this paper, we perform an in-depth analysis of characteristics of different datasets and investigate the performance of different summarization models under a cross-dataset setting, in which a summarizer trained on one corpus will be evaluated on a range of out-of-domain corpora. A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways (i.e. abstractive and extractive) on model generalization ability. Further, experimental results shed light on the limitations of existing summarizers. Brief introduction and supplementary code can be found in https://github.com/zide05/CDEvalSumm.

pdf
TICO-19: the Translation Initiative for COvid-19
Antonios Anastasopoulos | Alessandro Cattelan | Zi-Yi Dou | Marcello Federico | Christian Federmann | Dmitriy Genzel | Franscisco Guzmán | Junjie Hu | Macduff Hughes | Philipp Koehn | Rosie Lazar | Will Lewis | Graham Neubig | Mengmeng Niu | Alp Öktem | Eric Paquin | Grace Tang | Sylwia Tur
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.

pdf
A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with Bilingual Semantic Similarity Rewards
Zi-Yi Dou | Sachin Kumar | Yulia Tsvetkov
Proceedings of the Fourth Workshop on Neural Generation and Translation

Cross-lingual text summarization aims at generating a document summary in one language given input in another language. It is a practically important but under-explored task, primarily due to the dearth of available data. Existing methods resort to machine translation to synthesize training data, but such pipeline approaches suffer from error propagation. In this work, we propose an end-to-end cross-lingual text summarization model. The model uses reinforcement learning to directly optimize a bilingual semantic similarity metric between the summaries generated in a target language and gold summaries in a source language. We also introduce techniques to pre-train the model leveraging monolingual summarization and machine translation objectives. Experimental results in both English–Chinese and English–German cross-lingual summarization settings demonstrate the effectiveness of our methods. In addition, we find that reinforcement learning models with bilingual semantic similarity as rewards generate more fluent sentences than strong baselines.

pdf
Dynamic Data Selection and Weighting for Iterative Back-Translation
Zi-Yi Dou | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Back-translation has proven to be an effective method to utilize monolingual data in neural machine translation (NMT), and iteratively conducting back-translation can further improve the model performance. Selecting which monolingual data to back-translate is crucial, as we require that the resulting synthetic data are of high quality and reflect the target domain. To achieve these two goals, data selection and weighting strategies have been proposed, with a common practice being to select samples close to the target domain but also dissimilar to the average general-domain text. In this paper, we provide insights into this commonly used approach and generalize it to a dynamic curriculum learning strategy, which is applied to iterative back-translation models. In addition, we propose weighting strategies based on both the current quality of the sentence and its improvement over the previous iteration. We evaluate our models on domain adaptation, low-resource, and high-resource MT settings and on two language pairs. Experimental results demonstrate that our methods achieve improvements of up to 1.8 BLEU points over competitive baselines.

2019

pdf
Information Aggregation for Multi-Head Attention with Routing-by-Agreement
Jian Li | Baosong Yang | Zi-Yi Dou | Xing Wang | Michael R. Lyu | Zhaopeng Tu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Multi-head attention is appealing for its ability to jointly extract different types of information from multiple representation subspaces. Concerning the information aggregation, a common practice is to use a concatenation followed by a linear transformation, which may not fully exploit the expressiveness of multi-head attention. In this work, we propose to improve the information aggregation for multi-head attention with a more powerful routing-by-agreement algorithm. Specifically, the routing algorithm iteratively updates the proportion of how much a part (i.e. the distinct information learned from a specific subspace) should be assigned to a whole (i.e. the final output representation), based on the agreement between parts and wholes. Experimental results on linguistic probing tasks and machine translation tasks prove the superiority of the advanced information aggregation over the standard linear transformation.

pdf
compare-mt: A Tool for Holistic Comparison of Language Generation Systems
Graham Neubig | Zi-Yi Dou | Junjie Hu | Paul Michel | Danish Pruthi | Xinyi Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

In this paper, we describe compare-mt, a tool for holistic analysis and comparison of the results of systems for language generation tasks such as machine translation. The main goal of the tool is to give the user a high-level and coherent view of the salient differences between systems that can then be used to guide further analysis or system improvement. It implements a number of tools to do so, such as analysis of accuracy of generation of particular types of words, bucketed histograms of sentence accuracies or counts based on salient characteristics, and extraction of characteristic n-grams for each system. It also has a number of advanced features such as use of linguistic labels, source side data, or comparison of log likelihoods for probabilistic models, and also aims to be easily extensible by users to new types of analysis. compare-mt is a pure-Python open source package, that has already proven useful to generate analyses that have been used in our published papers. Demo Video: https://youtu.be/NyJEQT7t2CA

pdf
Investigating Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks
Zi-Yi Dou | Keyi Yu | Antonios Anastasopoulos
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Learning general representations of text is a fundamental problem for many natural language understanding (NLU) tasks. Previously, researchers have proposed to use language model pre-training and multi-task learning to learn robust representations. However, these methods can achieve sub-optimal performance in low-resource scenarios. Inspired by the recent success of optimization-based meta-learning algorithms, in this paper, we explore the model-agnostic meta-learning algorithm (MAML) and its variants for low-resource NLU tasks. We validate our methods on the GLUE benchmark and show that our proposed models can outperform several strong baselines. We further empirically demonstrate that the learned representations can be adapted to new tasks efficiently and effectively.

pdf
Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings
Zi-Yi Dou | Junjie Hu | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The recent success of neural machine translation models relies on the availability of high quality, in-domain data. Domain adaptation is required when domain-specific data is scarce or nonexistent. Previous unsupervised domain adaptation strategies include training the model with in-domain copied monolingual or back-translated data. However, these methods use generic representations for text regardless of domain shift, which makes it infeasible for translation models to control outputs conditional on a specific domain. In this work, we propose an approach that adapts models with domain-aware feature embeddings, which are learned via an auxiliary language modeling task. Our approach allows the model to assign domain-specific representations to words and output sentences in the desired domain. Our empirical results demonstrate the effectiveness of the proposed strategy, achieving consistent improvements in multiple experimental settings. In addition, we show that combining our method with back translation can further improve the performance of the model.

pdf
Domain Differential Adaptation for Neural Machine Translation
Zi-Yi Dou | Xinyi Wang | Junjie Hu | Graham Neubig
Proceedings of the 3rd Workshop on Neural Generation and Translation

Neural networks are known to be data hungry and domain sensitive, but it is nearly impossible to obtain large quantities of labeled data for every domain we are interested in. This necessitates the use of domain adaptation strategies. One common strategy encourages generalization by aligning the global distribution statistics between source and target domains, but one drawback is that the statistics of different domains or tasks are inherently divergent, and smoothing over these differences can lead to sub-optimal performance. In this paper, we propose the framework of Domain Differential Adaptation (DDA), where instead of smoothing over these differences we embrace them, directly modeling the difference between domains using models in a related task. We then use these learned domain differentials to adapt models for the target task accordingly. Experimental results on domain adaptation for neural machine translation demonstrate the effectiveness of this strategy, achieving consistent improvements over other alternative adaptation strategies in multiple experimental settings.

2018

pdf
Dynamic Oracle for Neural Machine Translation in Decoding Phase
Zi-Yi Dou | Hao Zhou | Shu-Jian Huang | Xin-Yu Dai | Jia-Jun Chen
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
Unsupervised Bilingual Lexicon Induction via Latent Variable Models
Zi-Yi Dou | Zhi-Hao Zhou | Shujian Huang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Bilingual lexicon extraction has been studied for decades and most previous methods have relied on parallel corpora or bilingual dictionaries. Recent studies have shown that it is possible to build a bilingual dictionary by aligning monolingual word embedding spaces in an unsupervised way. With the recent advances in generative models, we propose a novel approach which builds cross-lingual dictionaries via latent variable models and adversarial training with no parallel corpora. To demonstrate the effectiveness of our approach, we evaluate our approach on several language pairs and the experimental results show that our model could achieve competitive and even superior performance compared with several state-of-the-art models.

pdf
Exploiting Deep Representations for Neural Machine Translation
Zi-Yi Dou | Zhaopeng Tu | Xing Wang | Shuming Shi | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Advanced neural machine translation (NMT) models generally implement encoder and decoder as multiple layers, which allows systems to model complex functions and capture complicated linguistic structures. However, only the top layers of encoder and decoder are leveraged in the subsequent process, which misses the opportunity to exploit the useful information embedded in other layers. In this work, we propose to simultaneously expose all of these signals with layer aggregation and multi-layer attention mechanisms. In addition, we introduce an auxiliary regularization term to encourage different layers to capture diverse information. Experimental results on widely-used WMT14 English-German and WMT17 Chinese-English translation data demonstrate the effectiveness and universality of the proposed approach.

2017

pdf
Capturing User and Product Information for Document Level Sentiment Analysis with Deep Memory Network
Zi-Yi Dou
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Document-level sentiment classification is a fundamental problem which aims to predict a user’s overall sentiment about a product in a document. Several methods have been proposed to tackle the problem whereas most of them fail to consider the influence of users who express the sentiment and products which are evaluated. To address the issue, we propose a deep memory network for document-level sentiment classification which could capture the user and product information at the same time. To prove the effectiveness of our algorithm, we conduct experiments on IMDB and Yelp datasets and the results indicate that our model can achieve better performance than several existing methods.