Zhongkai Sun


pdf bib
Fine-grained Multi-lingual Disentangled Autoencoder for Language-agnostic Representation Learning
Zetian Wu | Zhongkai Sun | Zhengyang Zhao | Sixing Lu | Chengyuan Ma | Chenlei Guo
Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)

Encoding both language-specific and language-agnostic information into a single high-dimensional space is a common practice of pre-trained Multi-lingual Language Models (pMLM). Such encoding has been shown to perform effectively on natural language tasks requiring semantics of the whole sentence (e.g., translation). However, its effectiveness appears to be limited on tasks requiring partial information of the utterance (e.g., multi-lingual entity retrieval, template retrieval, and semantic alignment). In this work, a novel Fine-grained Multilingual Disentangled Autoencoder (FMDA) is proposed to disentangle fine-grained semantic information from language-specific information in a multi-lingual setting. FMDA is capable of successfully extracting the disentangled template semantic and residual semantic representations. Experiments conducted on the MASSIVE dataset demonstrate that the disentangled encoding can boost each other during the training, thus consistently outperforming the original pMLM and the strong language disentanglement baseline on monolingual template retrieval and cross-lingual semantic retrieval tasks across multiple languages.


A New View of Multi-modal Language Analysis: Audio and Video Features as Text “Styles”
Zhongkai Sun | Prathusha K Sarma | Yingyu Liang | William Sethares
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Imposing the style of one image onto another is called style transfer. For example, the style of a Van Gogh painting might be imposed on a photograph to yield an interesting hybrid. This paper applies the adaptive normalization used for image style transfer to language semantics, i.e., the style is the way the words are said (tone of voice and facial expressions) and these are style-transferred onto the text. The goal is to learn richer representations for multi-modal utterances using style-transferred multi-modal features. The proposed Style-Transfer Transformer (STT) grafts a stepped styled adaptive layer-normalization onto a transformer network, the output from which is used in sentiment analysis and emotion recognition problems. In addition to achieving performance on par with the state-of-the art (but using less than a third of the model parameters), we examine the relative contributions of each mode when used in the downstream applications.

VAE based Text Style Transfer with Pivot Words Enhancement Learning
Haoran Xu | Sixing Lu | Zhongkai Sun | Chengyuan Ma | Chenlei Guo
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

Text Style Transfer (TST) aims to alter the underlying style of the source text to another specific style while keeping the same content. Due to the scarcity of high-quality parallel training data, unsupervised learning has become a trending direction for TST tasks. In this paper, we propose a novel VAE based Text Style Transfer with pivOt Words Enhancement leaRning (VT-STOWER) method which utilizes Variational AutoEncoder (VAE) and external style embeddings to learn semantics and style distribution jointly. Additionally, we introduce pivot words learning, which is applied to learn decisive words for a specific style and thereby further improve the overall performance of the style transfer. The proposed VT-STOWER can be scaled to different TST scenarios given very limited and non-parallel training data with a novel and flexible style strength control mechanism. Experiments demonstrate that the VT-STOWER outperforms the state-of-the-art on sentiment, formality, and code-switching TST tasks.