Zhijiang Guo


2022

pdf
CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking
Xuming Hu | Zhijiang Guo | GuanYu Wu | Aiwei Liu | Lijie Wen | Philip Yu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The explosion of misinformation spreading in the media ecosystem urges for automated fact-checking. While misinformation spans both geographic and linguistic boundaries, most work in the field has focused on English. Datasets and tools available in other languages, such as Chinese, are limited. In order to bridge this gap, we construct CHEF, the first CHinese Evidence-based Fact-checking dataset of 10K real-world claims. The dataset covers multiple domains, ranging from politics to public health, and provides annotated evidence retrieved from the Internet. Further, we develop established baselines and a novel approach that is able to model the evidence retrieval as a latent variable, allowing jointly training with the veracity prediction model in an end-to-end fashion. Extensive experiments show that CHEF will provide a challenging testbed for the development of fact-checking systems designed to retrieve and reason over non-English claims.

pdf
A Survey on Automated Fact-Checking
Zhijiang Guo | Michael Schlichtkrull | Andreas Vlachos
Transactions of the Association for Computational Linguistics, Volume 10

Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.

pdf
Scene Graph Modification as Incremental Structure Expanding
Xuming Hu | Zhijiang Guo | Yu Fu | Lijie Wen | Philip S. Yu
Proceedings of the 29th International Conference on Computational Linguistics

A scene graph is a semantic representation that expresses the objects, attributes, and relationships between objects in a scene. Scene graphs play an important role in many cross modality tasks, as they are able to capture the interactions between images and texts. In this paper, we focus on scene graph modification (SGM), where the system is required to learn how to update an existing scene graph based on a natural language query. Unlike previous approaches that rebuilt the entire scene graph, we frame SGM as a graph expansion task by introducing the incremental structure expanding (ISE). ISE constructs the target graph by incrementally expanding the source graph without changing the unmodified structure. Based on ISE, we further propose a model that iterates between nodes prediction and edges prediction, inferring more accurate and harmonious expansion decisions progressively. In addition, we construct a challenging dataset that contains more complicated queries and larger scene graphs than existing datasets. Experiments on four benchmarks demonstrate the effectiveness of our approach, which surpasses the previous state-of-the-art model by large margins.

pdf bib
Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER)
Rami Aly | Christos Christodoulopoulos | Oana Cocarascu | Zhijiang Guo | Arpit Mittal | Michael Schlichtkrull | James Thorne | Andreas Vlachos
Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER)

2021

pdf
Uncovering Main Causalities for Long-tailed Information Extraction
Guoshun Nan | Jiaqi Zeng | Rui Qiao | Zhijiang Guo | Wei Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Information Extraction (IE) aims to extract structural information from unstructured texts. In practice, long-tailed distributions caused by the selection bias of a dataset may lead to incorrect correlations, also known as spurious correlations, between entities and labels in the conventional likelihood models. This motivates us to propose counterfactual IE (CFIE), a novel framework that aims to uncover the main causalities behind data in the view of causal inference. Specifically, 1) we first introduce a unified structural causal model (SCM) for various IE tasks, describing the relationships among variables; 2) with our SCM, we then generate counterfactuals based on an explicit language structure to better calculate the direct causal effect during the inference stage; 3) we further propose a novel debiasing approach to yield more robust predictions. Experiments on three IE tasks across five public datasets show the effectiveness of our CFIE model in mitigating the spurious correlation issues.

pdf bib
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)
Rami Aly | Christos Christodoulopoulos | Oana Cocarascu | Zhijiang Guo | Arpit Mittal | Michael Schlichtkrull | James Thorne | Andreas Vlachos
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

pdf bib
The Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS) Shared Task
Rami Aly | Zhijiang Guo | Michael Sejr Schlichtkrull | James Thorne | Andreas Vlachos | Christos Christodoulopoulos | Oana Cocarascu | Arpit Mittal
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

The Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS) shared task, asks participating systems to determine whether human-authored claims are Supported or Refuted based on evidence retrieved from Wikipedia (or NotEnoughInfo if the claim cannot be verified). Compared to the FEVER 2018 shared task, the main challenge is the addition of structured data (tables and lists) as a source of evidence. The claims in the FEVEROUS dataset can be verified using only structured evidence, only unstructured evidence, or a mixture of both. Submissions are evaluated using the FEVEROUS score that combines label accuracy and evidence retrieval. Unlike FEVER 2018, FEVEROUS requires partial evidence to be returned for NotEnoughInfo claims, and the claims are longer and thus more complex. The shared task received 13 entries, six of which were able to beat the baseline system. The winning team was “Bust a move!”, achieving a FEVEROUS score of 27% (+9% compared to the baseline). In this paper we describe the shared task, present the full results and highlight commonalities and innovations among the participating systems.

2020

pdf
Reasoning with Latent Structure Refinement for Document-Level Relation Extraction
Guoshun Nan | Zhijiang Guo | Ivan Sekulic | Wei Lu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Document-level relation extraction requires integrating information within and across multiple sentences of a document and capturing complex interactions between inter-sentence entities. However, effective aggregation of relevant information in the document remains a challenging research question. Existing approaches construct static document-level graphs based on syntactic trees, co-references or heuristics from the unstructured text to model the dependencies. Unlike previous methods that may not be able to capture rich non-local interactions for inference, we propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph. We further develop a refinement strategy, which enables the model to incrementally aggregate relevant information for multi-hop reasoning. Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED), significantly improving over the previous results, and also yields new state-of-the-art results on the CDR and GDA dataset. Furthermore, extensive analyses show that the model is able to discover more accurate inter-sentence relations.

pdf
Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation
Yan Zhang | Zhijiang Guo | Zhiyang Teng | Wei Lu | Shay B. Cohen | Zuozhu Liu | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.

2019

pdf
Densely Connected Graph Convolutional Networks for Graph-to-Sequence Learning
Zhijiang Guo | Yan Zhang | Zhiyang Teng | Wei Lu
Transactions of the Association for Computational Linguistics, Volume 7

We focus on graph-to-sequence learning, which can be framed as transducing graph structures to sequences for text generation. To capture structural information associated with graphs, we investigate the problem of encoding graphs using graph convolutional networks (GCNs). Unlike various existing approaches where shallow architectures were used for capturing local structural information only, we introduce a dense connection strategy, proposing a novel Densely Connected Graph Convolutional Network (DCGCN). Such a deep architecture is able to integrate both local and non-local features to learn a better structural representation of a graph. Our model outperforms the state-of-the-art neural models significantly on AMR-to-text generation and syntax-based neural machine translation.

pdf
Attention Guided Graph Convolutional Networks for Relation Extraction
Zhijiang Guo | Yan Zhang | Wei Lu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Dependency trees convey rich structural information that is proven useful for extracting relations among entities in text. However, how to effectively make use of relevant information while ignoring irrelevant information from the dependency trees remains a challenging research question. Existing approaches employing rule based hard-pruning strategies for selecting relevant partial dependency structures may not always yield optimal results. In this work, we propose Attention Guided Graph Convolutional Networks (AGGCNs), a novel model which directly takes full dependency trees as inputs. Our model can be understood as a soft-pruning approach that automatically learns how to selectively attend to the relevant sub-structures useful for the relation extraction task. Extensive results on various tasks including cross-sentence n-ary relation extraction and large-scale sentence-level relation extraction show that our model is able to better leverage the structural information of the full dependency trees, giving significantly better results than previous approaches.

2018

pdf
Better Transition-Based AMR Parsing with a Refined Search Space
Zhijiang Guo | Wei Lu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper introduces a simple yet effective transition-based system for Abstract Meaning Representation (AMR) parsing. We argue that a well-defined search space involved in a transition system is crucial for building an effective parser. We propose to conduct the search in a refined search space based on a new compact AMR graph and an improved oracle. Our end-to-end parser achieves the state-of-the-art performance on various datasets with minimal additional information.