Space situational awareness typically makes use of physical measurements from radar, telescopes, and other assets to monitor satellites and other spacecraft for operational, navigational, and defense purposes. In this work we explore using textual input for the space situational awareness task. We construct a corpus of 48.5k news articles spanning all known active satellites between 2009 and 2020. Using a dependency-rule-based extraction system designed to target three high-impact events – spacecraft launches, failures, and decommissionings, we identify 1,787 space-event sentences that are then annotated by humans with 15.9k labels for event slots. We empirically demonstrate a state-of-the-art neural extraction system achieves an overall F1 between 53 and 91 per slot for event extraction in this low-resource, high-impact domain.
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a “rationale”). If this could be done, new opportunities for understanding and debugging the system’s reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.
Prior work has demonstrated that question classification (QC), recognizing the problem domain of a question, can help answer it more accurately. However, developing strong QC algorithms has been hindered by the limited size and complexity of annotated data available. To address this, we present the largest challenge dataset for QC, containing 7,787 science exam questions paired with detailed classification labels from a fine-grained hierarchical taxonomy of 406 problem domains. We then show that a BERT-based model trained on this dataset achieves a large (+0.12 MAP) gain compared with previous methods, while also achieving state-of-the-art performance on benchmark open-domain and biomedical QC datasets. Finally, we show that using this model’s predictions of question topic significantly improves the accuracy of a question answering system by +1.7% P@1, with substantial future gains possible as QC performance improves.
Explainable question answering for complex questions often requires combining large numbers of facts to answer a question while providing a human-readable explanation for the answer, a process known as multi-hop inference. Standardized science questions require combining an average of 6 facts, and as many as 16 facts, in order to answer and explain, but most existing datasets for multi-hop reasoning focus on combining only two facts, significantly limiting the ability of multi-hop inference algorithms to learn to generate large inferences. In this work we present the second iteration of the WorldTree project, a corpus of 5,114 standardized science exam questions paired with large detailed multi-fact explanations that combine core scientific knowledge and world knowledge. Each explanation is represented as a lexically-connected “explanation graph” that combines an average of 6 facts drawn from a semi-structured knowledge base of 9,216 facts across 66 tables. We use this explanation corpus to author a set of 344 high-level science domain inference patterns similar to semantic frames supporting multi-hop inference. Together, these resources provide training data and instrumentation for developing many-fact multi-hop inference models for question answering.