Zhe Yang


2022

pdf
Low-resource Neural Machine Translation with Cross-modal Alignment
Zhe Yang | Qingkai Fang | Yang Feng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

How to achieve neural machine translation with limited parallel data? Existing techniques often rely on large-scale monolingual corpus, which is impractical for some low-resource languages. In this paper, we turn to connect several low-resource languages to a particular high-resource one by additional visual modality. Specifically, we propose a cross-modal contrastive learning method to learn a shared space for all languages, where both a coarse-grained sentence-level objective and a fine-grained token-level one are introduced. Experimental results and further analysis show that our method can effectively learn the cross-modal and cross-lingual alignment with a small amount of image-text pairs, and achieves significant improvements over the text-only baseline under both zero-shot and few-shot scenarios.

2020

pdf
A Joint Model for Aspect-Category Sentiment Analysis with Shared Sentiment Prediction Layer
Yuncong Li | Zhe Yang | Cunxiang Yin | Xu Pan | Lunan Cui | Qiang Huang | Ting Wei
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Aspect-category sentiment analysis (ACSA) aims to predict the aspect categories mentioned in texts and their corresponding sentiment polarities. Some joint models have been proposed to address this task. Given a text, these joint models detect all the aspect categories mentioned in the text and predict the sentiment polarities toward them at once. Although these joint models obtain promising performances, they train separate parameters for each aspect category and therefore suffer from data deficiency of some aspect categories. To solve this problem, we propose a novel joint model which contains a shared sentiment prediction layer. The shared sentiment prediction layer transfers sentiment knowledge between aspect categories and alleviates the problem caused by data deficiency. Experiments conducted on SemEval-2016 Datasets demonstrate the effectiveness of our model.