Synthetic datasets have successfully been used to probe visual question-answering datasets for their reasoning abilities. CLEVR (John- son et al., 2017), for example, tests a range of visual reasoning abilities. The questions in CLEVR focus on comparisons of shapes, colors, and sizes, numerical reasoning, and existence claims. This paper introduces a minimally biased, diagnostic visual question-answering dataset, QLEVR, that goes beyond existential and numerical quantification and focus on more complex quantifiers and their combinations, e.g., asking whether there are more than two red balls that are smaller than at least three blue balls in an image. We describe how the dataset was created and present a first evaluation of state-of-the-art visual question-answering models, showing that QLEVR presents a formidable challenge to our current models. Code and Dataset are available at https://github.com/zechenli03/QLEVR
Abstract Text classification is a widely studied problem and has broad applications. In many real-world problems, the number of texts for training classification models is limited, which renders these models prone to overfitting. To address this problem, we propose SSL-Reg, a data-dependent regularization approach based on self-supervised learning (SSL). SSL (Devlin et al., 2019a) is an unsupervised learning approach that defines auxiliary tasks on input data without using any human-provided labels and learns data representations by solving these auxiliary tasks. In SSL-Reg, a supervised classification task and an unsupervised SSL task are performed simultaneously. The SSL task is unsupervised, which is defined purely on input texts without using any human- provided labels. Training a model using an SSL task can prevent the model from being overfitted to a limited number of class labels in the classification task. Experiments on 17 text classification datasets demonstrate the effectiveness of our proposed method. Code is available at https://github.com/UCSD-AI4H/SSReg.
Under the pandemic of COVID-19, people experiencing COVID19-related symptoms have a pressing need to consult doctors. Because of the shortage of medical professionals, many people cannot receive online consultations timely. To address this problem, we aim to develop a medical dialog system that can provide COVID19-related consultations. We collected two dialog datasets – CovidDialog – (in English and Chinese respectively) containing conversations between doctors and patients about COVID-19. While the largest of their kind, these two datasets are still relatively small compared with general-domain dialog datasets. Training complex dialog generation models on small datasets bears high risk of overfitting. To alleviate overfitting, we develop a multi-task learning approach, which regularizes the data-deficient dialog generation task with a masked token prediction task. Experiments on the CovidDialog datasets demonstrate the effectiveness of our approach. We perform both human evaluation and automatic evaluation of dialogs generated by our method. Results show that the generated responses are promising in being doctor-like, relevant to conversation history, clinically informative and correct. The code and the data are available at https://github.com/UCSD-AI4H/COVID-Dialogue.