Yunyi Yang


2021

pdf
Retrieve & Memorize: Dialog Policy Learning with Multi-Action Memory
YunHao Li | Yunyi Yang | Xiaojun Quan | Jianxing Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Directed Acyclic Graph Network for Conversational Emotion Recognition
Weizhou Shen | Siyue Wu | Yunyi Yang | Xiaojun Quan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The modeling of conversational context plays a vital role in emotion recognition from conversation (ERC). In this paper, we put forward a novel idea of encoding the utterances with a directed acyclic graph (DAG) to better model the intrinsic structure within a conversation, and design a directed acyclic neural network, namely DAG-ERC, to implement this idea. In an attempt to combine the strengths of conventional graph-based neural models and recurrence-based neural models, DAG-ERC provides a more intuitive way to model the information flow between long-distance conversation background and nearby context. Extensive experiments are conducted on four ERC benchmarks with state-of-the-art models employed as baselines for comparison. The empirical results demonstrate the superiority of this new model and confirm the motivation of the directed acyclic graph architecture for ERC.

pdf
Amendable Generation for Dialogue State Tracking
Xin Tian | Liankai Huang | Yingzhan Lin | Siqi Bao | Huang He | Yunyi Yang | Hua Wu | Fan Wang | Shuqi Sun
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

In task-oriented dialogue systems, recent dialogue state tracking methods tend to perform one-pass generation of the dialogue state based on the previous dialogue state. The mistakes of these models made at the current turn are prone to be carried over to the next turn, causing error propagation. In this paper, we propose a novel Amendable Generation for Dialogue State Tracking (AG-DST), which contains a two-pass generation process: (1) generating a primitive dialogue state based on the dialogue of the current turn and the previous dialogue state, and (2) amending the primitive dialogue state from the first pass. With the additional amending generation pass, our model is tasked to learn more robust dialogue state tracking by amending the errors that still exist in the primitive dialogue state, which plays the role of reviser in the double-checking process and alleviates unnecessary error propagation. Experimental results show that AG-DST significantly outperforms previous works in two active DST datasets (MultiWOZ 2.2 and WOZ 2.0), achieving new state-of-the-art performances.

2020

pdf
Relational Graph Attention Network for Aspect-based Sentiment Analysis
Kai Wang | Weizhou Shen | Yunyi Yang | Xiaojun Quan | Rui Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Aspect-based sentiment analysis aims to determine the sentiment polarity towards a specific aspect in online reviews. Most recent efforts adopt attention-based neural network models to implicitly connect aspects with opinion words. However, due to the complexity of language and the existence of multiple aspects in a single sentence, these models often confuse the connections. In this paper, we address this problem by means of effective encoding of syntax information. Firstly, we define a unified aspect-oriented dependency tree structure rooted at a target aspect by reshaping and pruning an ordinary dependency parse tree. Then, we propose a relational graph attention network (R-GAT) to encode the new tree structure for sentiment prediction. Extensive experiments are conducted on the SemEval 2014 and Twitter datasets, and the experimental results confirm that the connections between aspects and opinion words can be better established with our approach, and the performance of the graph attention network (GAT) is significantly improved as a consequence.

pdf
Constituency Lattice Encoding for Aspect Term Extraction
Yunyi Yang | Kun Li | Xiaojun Quan | Weizhou Shen | Qinliang Su
Proceedings of the 28th International Conference on Computational Linguistics

One of the remaining challenges for aspect term extraction in sentiment analysis resides in the extraction of phrase-level aspect terms, which is non-trivial to determine the boundaries of such terms. In this paper, we aim to address this issue by incorporating the span annotations of constituents of a sentence to leverage the syntactic information in neural network models. To this end, we first construct a constituency lattice structure based on the constituents of a constituency tree. Then, we present two approaches to encoding the constituency lattice using BiLSTM-CRF and BERT as the base models, respectively. We experimented on two benchmark datasets to evaluate the two models, and the results confirm their superiority with respective 3.17 and 1.35 points gained in F1-Measure over the current state of the art. The improvements justify the effectiveness of the constituency lattice for aspect term extraction.