Yujiu Yang


EmpHi: Generating Empathetic Responses with Human-like Intents
Mao Yan Chen | Siheng Li | Yujiu Yang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In empathetic conversations, humans express their empathy to others with empathetic intents. However, most existing empathetic conversational methods suffer from a lack of empathetic intents, which leads to monotonous empathy. To address the bias of the empathetic intents distribution between empathetic dialogue models and humans, we propose a novel model to generate empathetic responses with human-consistent empathetic intents, EmpHi for short. Precisely, EmpHi learns the distribution of potential empathetic intents with a discrete latent variable, then combines both implicit and explicit intent representation to generate responses with various empathetic intents. Experiments show that EmpHi outperforms state-of-the-art models in terms of empathy, relevance, and diversity on both automatic and human evaluation. Moreover, the case studies demonstrate the high interpretability and outstanding performance of our model.

IIGROUP Submissions for WMT22 Word-Level AutoCompletion Task
Cheng Yang | Siheng Li | Chufan Shi | Yujiu Yang
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents IIGroup’s submission to the WMT22 Word-Level AutoCompletion(WLAC) Shared Task in four language directions. We propose to use a Generate-then-Rerank framework to solve this task. More specifically, the generator is used to generate candidate words and recall as many positive candidates as possible. To facilitate the training process of the generator, we propose a span-level mask prediction task. Once we get the candidate words, we take the top-K candidates and feed them into the reranker. The reranker is used to select the most confident candidate. The experimental results in four language directions demonstrate the effectiveness of our systems. Our systems achieve competitive performance ranking 1st in English to Chinese subtask and 2nd in Chinese to English subtask.


MIRTT: Learning Multimodal Interaction Representations from Trilinear Transformers for Visual Question Answering
Junjie Wang | Yatai Ji | Jiaqi Sun | Yujiu Yang | Tetsuya Sakai
Findings of the Association for Computational Linguistics: EMNLP 2021

In Visual Question Answering (VQA), existing bilinear methods focus on the interaction between images and questions. As a result, the answers are either spliced into the questions or utilized as labels only for classification. On the other hand, trilinear models such as the CTI model efficiently utilize the inter-modality information between answers, questions, and images, while ignoring intra-modality information. Inspired by this observation, we propose a new trilinear interaction framework called MIRTT (Learning Multimodal Interaction Representations from Trilinear Transformers), incorporating the attention mechanisms for capturing inter-modality and intra-modality relationships. Moreover, we design a two-stage workflow where a bilinear model reduces the free-form, open-ended VQA problem into a multiple-choice VQA problem. Furthermore, to obtain accurate and generic multimodal representations, we pre-train MIRTT with masked language prediction. Our method achieves state-of-the-art performance on the Visual7W Telling task and VQA-1.0 Multiple Choice task and outperforms bilinear baselines on the VQA-2.0, TDIUC and GQA datasets.


HGCN4MeSH: Hybrid Graph Convolution Network for MeSH Indexing
Miaomiao Yu | Yujiu Yang | Chenhui Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Recently deep learning has been used in Medical subject headings (MeSH) indexing to reduce the time and monetary cost by manual annotation, including DeepMeSH, TextCNN, etc. However, these models still suffer from failing to capture the complex correlations between MeSH terms. To this end, we introduce Graph Convolution Network (GCN) to learn the relationship between these terms, and present a novel Hybrid Graph Convolution Net for MeSH index (HGCN4MeSH). Basically, we utilize two BiGRUs to learn the embedding representation of the abstract and the title of the MeSH index text respectively. At the same time, we establish the adjacency matrix of MeSH terms based on the co-occurrence relationships in Corpus, which is easy to apply for GCN representation learning. On the basis of learning the mixed representation, the prediction problem of the MeSH index keywords is transformed into an extreme multi-label classification problem after the attention layer operation. Experimental results on two datasets show that HGCN4MeSH is competitive compared with the state-of-the-art methods.

DT-QDC: A Dataset for Question Comprehension in Online Test
Sijin Wu | Yujiu Yang | Nicholas Yung | Zhengchen Shen | Zeyang Lei
Proceedings of the 28th International Conference on Computational Linguistics

With the transformation of education from the traditional classroom environment to online education and assessment, it is more and more important to accurately assess the difficulty of questions than ever. As teachers may not be able to follow the student’s performance and learning behavior closely, a well-defined method to measure the difficulty of questions to guide learning is necessary. In this paper, we explore the concept of question difficulty and provide our new Chinese DT-QDC dataset. This is currently the largest and only Chinese question dataset, and it also has enriched attributes and difficulty labels. Additional attributes such as keywords, chapter, and question type would allow models to understand questions more precisely. We proposed the MTMS-BERT and ORMS-BERT, which can improve the judgment of difficulty from different views. The proposed methods outperforms different baselines by 7.79% on F1-score and 15.92% on MAE, 28.26% on MSE on the new DT-QDC dataset, laying the foundation for the question difficulty comprehension task.


Multi-glance Reading Model for Text Understanding
Pengcheng Zhu | Yujiu Yang | Wenqiang Gao | Yi Liu
Proceedings of the Eight Workshop on Cognitive Aspects of Computational Language Learning and Processing

In recent years, a variety of recurrent neural networks have been proposed, e.g LSTM. However, existing models only read the text once, it cannot describe the situation of repeated reading in reading comprehension. In fact, when reading or analyzing a text, we may read the text several times rather than once if we couldn’t well understand it. So, how to model this kind of the reading behavior? To address the issue, we propose a multi-glance mechanism (MGM) for modeling the habit of reading behavior. In the proposed framework, the actual reading process can be fully simulated, and then the obtained information can be consistent with the task. Based on the multi-glance mechanism, we design two types of recurrent neural network models for repeated reading: Glance Cell Model (GCM) and Glance Gate Model (GGM). Visualization analysis of the GCM and the GGM demonstrates the effectiveness of multi-glance mechanisms. Experiments results on the large-scale datasets show that the proposed methods can achieve better performance.

A Multi-sentiment-resource Enhanced Attention Network for Sentiment Classification
Zeyang Lei | Yujiu Yang | Min Yang | Yi Liu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Deep learning approaches for sentiment classification do not fully exploit sentiment linguistic knowledge. In this paper, we propose a Multi-sentiment-resource Enhanced Attention Network (MEAN) to alleviate the problem by integrating three kinds of sentiment linguistic knowledge (e.g., sentiment lexicon, negation words, intensity words) into the deep neural network via attention mechanisms. By using various types of sentiment resources, MEAN utilizes sentiment-relevant information from different representation sub-spaces, which makes it more effective to capture the overall semantics of the sentiment, negation and intensity words for sentiment prediction. The experimental results demonstrate that MEAN has robust superiority over strong competitors.


Latent Community Discovery with Network Regularization for Core Actors Clustering
Guangxu Xun | Yujiu Yang | Liangwei Wang | Wenhuang Liu
Proceedings of COLING 2012: Posters