Yufan Jiang


Task-guided Disentangled Tuning for Pretrained Language Models
Jiali Zeng | Yufan Jiang | Shuangzhi Wu | Yongjing Yin | Mu Li
Findings of the Association for Computational Linguistics: ACL 2022

Pretrained language models (PLMs) trained on large-scale unlabeled corpus are typically fine-tuned on task-specific downstream datasets, which have produced state-of-the-art results on various NLP tasks. However, the data discrepancy issue in domain and scale makes fine-tuning fail to efficiently capture task-specific patterns, especially in low data regime. To address this issue, we propose Task-guided Disentangled Tuning (TDT) for PLMs, which enhances the generalization of representations by disentangling task-relevant signals from the entangled representations. For a given task, we introduce a learnable confidence model to detect indicative guidance from context, and further propose a disentangled regularization to mitigate the over-reliance problem. Experimental results on GLUE and CLUE benchmarks show that TDT gives consistently better results than fine-tuning with different PLMs, and extensive analysis demonstrates the effectiveness and robustness of our method. Code is available at https://github.com/lemon0830/TDT.

DualNER: A Dual-Teaching framework for Zero-shot Cross-lingual Named Entity Recognition
Jiali Zeng | Yufan Jiang | Yongjing Yin | Xu Wang | Binghuai Lin | Yunbo Cao
Findings of the Association for Computational Linguistics: EMNLP 2022

We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a dual-teaching manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER.

Contrastive Learning with Prompt-derived Virtual Semantic Prototypes for Unsupervised Sentence Embedding
Jiali Zeng | Yongjing Yin | Yufan Jiang | Shuangzhi Wu | Yunbo Cao
Findings of the Association for Computational Linguistics: EMNLP 2022

Contrastive learning has become a new paradigm for unsupervised sentence embeddings.Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts.Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences.Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines.Code is available at https://github.com/lemon0830/promptCSE.

An Efficient Coarse-to-Fine Facet-Aware Unsupervised Summarization Framework Based on Semantic Blocks
Xinnian Liang | Jing Li | Shuangzhi Wu | Jiali Zeng | Yufan Jiang | Mu Li | Zhoujun Li
Proceedings of the 29th International Conference on Computational Linguistics

Unsupervised summarization methods have achieved remarkable results by incorporating representations from pre-trained language models. However, existing methods fail to consider efficiency and effectiveness at the same time when the input document is extremely long. To tackle this problem, in this paper, we proposed an efficient Coarse-to-Fine Facet-Aware Ranking (C2F-FAR) framework for unsupervised long document summarization, which is based on the semantic block. The semantic block refers to continuous sentences in the document that describe the same facet. Specifically, we address this problem by converting the one-step ranking method into the hierarchical multi-granularity two-stage ranking. In the coarse-level stage, we proposed a new segment algorithm to split the document into facet-aware semantic blocks and then filter insignificant blocks. In the fine-level stage, we select salient sentences in each block and then extract the final summary from selected sentences. We evaluate our framework on four long document summarization datasets: Gov-Report, BillSum, arXiv, and PubMed. Our C2F-FAR can achieve new state-of-the-art unsupervised summarization results on Gov-Report and BillSum. In addition, our method speeds up 4-28 times more than previous methods.


Recurrent Attention for Neural Machine Translation
Jiali Zeng | Shuangzhi Wu | Yongjing Yin | Yufan Jiang | Mu Li
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent research questions the importance of the dot-product self-attention in Transformer models and shows that most attention heads learn simple positional patterns. In this paper, we push further in this research line and propose a novel substitute mechanism for self-attention: Recurrent AtteNtion (RAN) . RAN directly learns attention weights without any token-to-token interaction and further improves their capacity by layer-to-layer interaction. Across an extensive set of experiments on 10 machine translation tasks, we find that RAN models are competitive and outperform their Transformer counterpart in certain scenarios, with fewer parameters and inference time. Particularly, when apply RAN to the decoder of Transformer, there brings consistent improvements by about +0.5 BLEU on 6 translation tasks and +1.0 BLEU on Turkish-English translation task. In addition, we conduct extensive analysis on the attention weights of RAN to confirm their reasonableness. Our RAN is a promising alternative to build more effective and efficient NMT models.


Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation
Bei Li | Hui Liu | Ziyang Wang | Yufan Jiang | Tong Xiao | Jingbo Zhu | Tongran Liu | Changliang Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in document-level neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.

Learning Architectures from an Extended Search Space for Language Modeling
Yinqiao Li | Chi Hu | Yuhao Zhang | Nuo Xu | Yufan Jiang | Tong Xiao | Jingbo Zhu | Tongran Liu | Changliang Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural architecture search (NAS) has advanced significantly in recent years but most NAS systems restrict search to learning architectures of a recurrent or convolutional cell. In this paper, we extend the search space of NAS. In particular, we present a general approach to learn both intra-cell and inter-cell architectures (call it ESS). For a better search result, we design a joint learning method to perform intra-cell and inter-cell NAS simultaneously. We implement our model in a differentiable architecture search system. For recurrent neural language modeling, it outperforms a strong baseline significantly on the PTB and WikiText data, with a new state-of-the-art on PTB. Moreover, the learned architectures show good transferability to other systems. E.g., they improve state-of-the-art systems on the CoNLL and WNUT named entity recognition (NER) tasks and CoNLL chunking task, indicating a promising line of research on large-scale pre-learned architectures.

Dynamic Curriculum Learning for Low-Resource Neural Machine Translation
Chen Xu | Bojie Hu | Yufan Jiang | Kai Feng | Zeyang Wang | Shen Huang | Qi Ju | Tong Xiao | Jingbo Zhu
Proceedings of the 28th International Conference on Computational Linguistics

Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT’16 En-De.

Shallow-to-Deep Training for Neural Machine Translation
Bei Li | Ziyang Wang | Hui Liu | Yufan Jiang | Quan Du | Tong Xiao | Huizhen Wang | Jingbo Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but training an extremely deep encoder is time consuming. Moreover, why deep models help NMT is an open question. In this paper, we investigate the behavior of a well-tuned deep Transformer system. We find that stacking layers is helpful in improving the representation ability of NMT models and adjacent layers perform similarly. This inspires us to develop a shallow-to-deep training method that learns deep models by stacking shallow models. In this way, we successfully train a Transformer system with a 54-layer encoder. Experimental results on WMT’16 English-German and WMT’14 English-French translation tasks show that it is 1:4 faster than training from scratch, and achieves a BLEU score of 30:33 and 43:29 on two tasks. The code is publicly available at https://github.com/libeineu/SDT-Training.


Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition
Yufan Jiang | Chi Hu | Tong Xiao | Chunliang Zhang | Jingbo Zhu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper, we study differentiable neural architecture search (NAS) methods for natural language processing. In particular, we improve differentiable architecture search by removing the softmax-local constraint. Also, we apply differentiable NAS to named entity recognition (NER). It is the first time that differentiable NAS methods are adopted in NLP tasks other than language modeling. On both the PTB language modeling and CoNLL-2003 English NER data, our method outperforms strong baselines. It achieves a new state-of-the-art on the NER task.