Noise Learning is important in the task of text classification which depends on massive labeled data that could be error-prone. However, we find that noise learning in text classification is relatively underdeveloped: 1. many methods that have been proven effective in the image domain are not explored in text classification, 2. it is difficult to conduct a fair comparison between previous studies as they do experiments in different noise settings. In this work, we adapt four state-of-the-art methods of noise learning from the image domain to text classification. Moreover, we conduct comprehensive experiments on our benchmark of noise learning with seven commonly-used methods, four datasets, and five noise modes. Additionally, most previous works are based on an implicit hypothesis that the commonly-used datasets such as TREC, Ag-News and Chnsenticorp contain no errors. However, these datasets indeed contain 0.61% to 15.77% noise labels which we define as intrinsic noise that can cause inaccurate evaluation. Therefore, we build a new dataset Golden-Chnsenticorp( G-Chnsenticorp) without intrinsic noise to more accurately compare the effects of different noise learning methods. To the best of our knowledge, this is the first benchmark of noise learning for text classification.
Multi-hop inference for explanation generation is to combine two or more facts to make an inference. The task focuses on generating explanations for elementary science questions. In the task, the relevance between the explanations and the QA pairs is of vital importance. To address the task, a three-step framework is proposed. Firstly, vector distance between two texts is utilized to recall the top-K relevant explanations for each question, reducing the calculation consumption. Then, a selection module is employed to choose those most relative facts in an autoregressive manner, giving a preliminary order for the retrieved facts. Thirdly, we adopt a re-ranking module to re-rank the retrieved candidate explanations with relevance between each fact and the QA pairs. Experimental results illustrate the effectiveness of the proposed framework with an improvement of 39.78% in NDCG over the official baseline.
Word representations empowered with additional linguistic information have been widely studied and proved to outperform traditional embeddings. Current methods mainly focus on learning embeddings for words while embeddings of linguistic information (referred to as grain embeddings) are discarded after the learning. This work proposes a framework field embedding to jointly learn both word and grain embeddings by incorporating morphological, phonetic, and syntactical linguistic fields. The framework leverages an innovative fine-grained pipeline that integrates multiple linguistic fields and produces high-quality grain sequences for learning supreme word representations. A novel algorithm is also designed to learn embeddings for words and grains by capturing information that is contained within each field and that is shared across them. Experimental results of lexical tasks and downstream natural language processing tasks illustrate that our framework can learn better word embeddings and grain embeddings. Qualitative evaluations show grain embeddings effectively capture the semantic information.
This paper presents our wining contribution to SemEval 2021 Task 8: MeasEval. The purpose of this task is identifying the counts and measurements from clinical scientific discourse, including quantities, entities, properties, qualifiers, units, modifiers, and their mutual relations. This task can be induced to a joint entity and relation extraction problem. Accordingly, we propose CONNER, a cascade count and measurement extraction tool that can identify entities and the corresponding relations in a two-step pipeline model. We provide a detailed description of the proposed model hereinafter. Furthermore, the impact of the essential modules and our in-process technical schemes are also investigated.
Embedding-based entity alignment has been widely investigated in recent years, but most proposed methods still rely on an ideal supervised learning setting with a large number of unbiased seed mappings for training and validation, which significantly limits their usage. In this study, we evaluate those state-of-the-art methods in an industrial context, where the impact of seed mappings with different sizes and different biases is explored. Besides the popular benchmarks from DBpedia and Wikidata, we contribute and evaluate a new industrial benchmark that is extracted from two heterogeneous knowledge graphs (KGs) under deployment for medical applications. The experimental results enable the analysis of the advantages and disadvantages of these alignment methods and the further discussion of suitable strategies for their industrial deployment.