Yue Yang


2022

pdf
Show Me More Details: Discovering Hierarchies of Procedures from Semi-structured Web Data
Shuyan Zhou | Li Zhang | Yue Yang | Qing Lyu | Pengcheng Yin | Chris Callison-Burch | Graham Neubig
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Procedures are inherently hierarchical. To “make videos”, one may need to “purchase a camera”, which in turn may require one to “set a budget”. While such hierarchical knowledge is critical for reasoning about complex procedures, most existing work has treated procedures as shallow structures without modeling the parent-child relation. In this work, we attempt to construct an open-domain hierarchical knowledge-base (KB) of procedures based on wikiHow, a website containing more than 110k instructional articles, each documenting the steps to carry out a complex procedure. To this end, we develop a simple and efficient method that links steps (e.g., “purchase a camera”) in an article to other articles with similar goals (e.g., “how to choose a camera”), recursively constructing the KB. Our method significantly outperforms several strong baselines according to automatic evaluation, human judgment, and application to downstream tasks such as instructional video retrieval.

pdf
Visualizing the Obvious: A Concreteness-based Ensemble Model for Noun Property Prediction
Yue Yang | Artemis Panagopoulou | Marianna Apidianaki | Mark Yatskar | Chris Callison-Burch
Findings of the Association for Computational Linguistics: EMNLP 2022

Neural language models encode rich knowledge about entities and their relationships which can be extracted from their representations using probing. Common properties of nouns (e.g., red strawberries, small ant) are, however, more challenging to extract compared to other types of knowledge because they are rarely explicitly stated in texts.We hypothesize this to mainly be the case for perceptual properties which are obvious to the participants in the communication. We propose to extract these properties from images and use them in an ensemble model, in order to complement the information that is extracted from language models. We consider perceptual properties to be more concrete than abstract properties (e.g., interesting, flawless). We propose to use the adjectives’ concreteness score as a lever to calibrate the contribution of each source (text vs. images). We evaluate our ensemble model in a ranking task where the actual properties of a noun need to be ranked higher than other non-relevant properties. Our results show that the proposed combination of text and images greatly improves noun property prediction compared to powerful text-based language models.

pdf
Z-LaVI: Zero-Shot Language Solver Fueled by Visual Imagination
Yue Yang | Wenlin Yao | Hongming Zhang | Xiaoyang Wang | Dong Yu | Jianshu Chen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Large-scale pretrained language models have made significant advances in solving downstream language understanding tasks. However, they generally suffer from reporting bias, the phenomenon describing the lack of explicit commonsense knowledge in written text, e.g., ”an orange is orange”. To overcome this limitation, we develop a novel approach, Z-LaVI, to endow language models with visual imagination capabilities. Specifically, we leverage two complementary types of ”imaginations”: (i) recalling existing images through retrieval and (ii) synthesizing nonexistent images via text-to-image generation. Jointly exploiting the language inputs and the imagination, a pretrained vision-language model (e.g., CLIP) eventually composes a zero-shot solution to the original language tasks. Notably, fueling language models with imagination can effectively leverage visual knowledge to solve plain language tasks. In consequence, Z-LaVI consistently improves the zero-shot performance of existing language models across a diverse set of language tasks.

2021

pdf
Visual Goal-Step Inference using wikiHow
Yue Yang | Artemis Panagopoulou | Qing Lyu | Li Zhang | Mark Yatskar | Chris Callison-Burch
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events.

2020

pdf
MedDialog: Large-scale Medical Dialogue Datasets
Guangtao Zeng | Wenmian Yang | Zeqian Ju | Yue Yang | Sicheng Wang | Ruisi Zhang | Meng Zhou | Jiaqi Zeng | Xiangyu Dong | Ruoyu Zhang | Hongchao Fang | Penghui Zhu | Shu Chen | Pengtao Xie
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build large-scale medical dialogue datasets – MedDialog, which contain 1) a Chinese dataset with 3.4 million conversations between patients and doctors, 11.3 million utterances, 660.2 million tokens, covering 172 specialties of diseases, and 2) an English dataset with 0.26 million conversations, 0.51 million utterances, 44.53 million tokens, covering 96 specialties of diseases. To our best knowledge, MedDialog is the largest medical dialogue dataset to date. We pretrain several dialogue generation models on the Chinese MedDialog dataset, including Transformer, GPT, BERT-GPT, and compare their performance. It is shown that models trained on MedDialog are able to generate clinically correct and doctor-like medical dialogues. We also study the transferability of models trained on MedDialog to low-resource medical dialogue generation tasks. It is shown that via transfer learning which finetunes the models pretrained on MedDialog, the performance on medical dialogue generation tasks with small datasets can be greatly improved, as shown in human evaluation and automatic evaluation. The datasets and code are available at https://github.com/UCSD-AI4H/Medical-Dialogue-System