The emotional state of a speaker can be influenced by many different factors in dialogues, such as dialogue scene, dialogue topic, and interlocutor stimulus. The currently available data resources to support such multimodal affective analysis in dialogues are however limited in scale and diversity. In this work, we propose a Multi-modal Multi-scene Multi-label Emotional Dialogue dataset, M3ED, which contains 990 dyadic emotional dialogues from 56 different TV series, a total of 9,082 turns and 24,449 utterances. M3ED is annotated with 7 emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral) at utterance level, and encompasses acoustic, visual, and textual modalities. To the best of our knowledge, M3ED is the first multimodal emotional dialogue dataset in Chinese.It is valuable for cross-culture emotion analysis and recognition. We apply several state-of-the-art methods on the M3ED dataset to verify the validity and quality of the dataset. We also propose a general Multimodal Dialogue-aware Interaction framework, MDI, to model the dialogue context for emotion recognition, which achieves comparable performance to the state-of-the-art methods on the M3ED. The full dataset and codes are available.
End-to-end Speech Translation (ST) aims at translating the source language speech into target language text without generating the intermediate transcriptions. However, the training of end-to-end methods relies on parallel ST data, which are difficult and expensive to obtain. Fortunately, the supervised data for automatic speech recognition (ASR) and machine translation (MT) are usually more accessible, making zero-shot speech translation a potential direction. Existing zero-shot methods fail to align the two modalities of speech and text into a shared semantic space, resulting in much worse performance compared to the supervised ST methods. In order to enable zero-shot ST, we propose a novel Discrete Cross-Modal Alignment (DCMA) method that employs a shared discrete vocabulary space to accommodate and match both modalities of speech and text. Specifically, we introduce a vector quantization module to discretize the continuous representations of speech and text into a finite set of virtual tokens, and use ASR data to map corresponding speech and text to the same virtual token in a shared codebook. This way, source language speech can be embedded in the same semantic space as the source language text, which can be then transformed into target language text with an MT module. Experiments on multiple language pairs demonstrate that our zero-shot ST method significantly improves the SOTA, and even performers on par with the strong supervised ST baselines.
Emotion Recognition in Conversation (ERC) has attracted increasing attention in the affective computing research field. Previous works have mainly focused on modeling the semantic interactions in the dialogue and implicitly inferring the evolution of the speakers’ emotional states. Few works have considered the emotional interactions, which directly reflect the emotional evolution of speakers in the dialogue. According to psychological and behavioral studies, the emotional inertia and emotional stimulus are important factors that affect the speaker’s emotional state in conversations. In this work, we propose a novel Dialogue Emotion Interaction Network, DialogueEIN, to explicitly model the intra-speaker, inter-speaker, global and local emotional interactions to respectively simulate the emotional inertia, emotional stimulus, global and local emotional evolution in dialogues. Extensive experiments on four ERC benchmark datasets, IEMOCAP, MELD, EmoryNLP and DailyDialog, show that our proposed DialogueEIN considering emotional interaction factors can achieve superior or competitive performance compared to state-of-the-art methods. Our codes and models are released.
Emotion recognition in conversation (ERC) is a crucial component in affective dialogue systems, which helps the system understand users’ emotions and generate empathetic responses. However, most works focus on modeling speaker and contextual information primarily on the textual modality or simply leveraging multimodal information through feature concatenation. In order to explore a more effective way of utilizing both multimodal and long-distance contextual information, we propose a new model based on multimodal fused graph convolutional network, MMGCN, in this work. MMGCN can not only make use of multimodal dependencies effectively, but also leverage speaker information to model inter-speaker and intra-speaker dependency. We evaluate our proposed model on two public benchmark datasets, IEMOCAP and MELD, and the results prove the effectiveness of MMGCN, which outperforms other SOTA methods by a significant margin under the multimodal conversation setting.
This paper describes the CASIA’s system for the IWSLT 2020 open domain translation task. This year we participate in both Chinese→Japanese and Japanese→Chinese translation tasks. Our system is neural machine translation system based on Transformer model. We augment the training data with knowledge distillation and back translation to improve the translation performance. Domain data classification and weighted domain model ensemble are introduced to generate the final translation result. We compare and analyze the performance on development data with different model settings and different data processing techniques.
In this paper, we introduce a novel interactive approach to translate a source language into two different languages simultaneously and interactively. Specifically, the generation of one language relies on not only previously generated outputs by itself, but also the outputs predicted in the other language. Experimental results on IWSLT and WMT datasets demonstrate that our method can obtain significant improvements over both conventional Neural Machine Translation (NMT) model and multilingual NMT model.