Relation extraction typically aims to extract semantic relationships between entities from the unstructured text.One of the most essential data sources for relation extraction is the spoken language, such as interviews and dialogues.However, the error propagation introduced in automatic speech recognition (ASR) has been ignored in relation extraction, and the end-to-end speech-based relation extraction method has been rarely explored.In this paper, we propose a new listening information extraction task, i.e., speech relation extraction.We construct the training dataset for speech relation extraction via text-to-speech systems, and we construct the testing dataset via crowd-sourcing with native English speakers.We explore speech relation extraction via two approaches: the pipeline approach conducting text-based extraction with a pretrained ASR module, and the end2end approach via a new proposed encoder-decoder model, or what we called SpeechRE.We conduct comprehensive experiments to distinguish the challenges in speech relation extraction, which may shed light on future explorations. We share the code and data on https://github.com/wutong8023/SpeechRE.
Answering complex questions that require multi-step multi-type reasoning over raw text is challenging, especially when conducting numerical reasoning. Neural Module Networks (NMNs), follow the programmer-interpreter framework and design trainable modules to learn different reasoning skills. However, NMNs only have limited reasoning abilities, and lack numerical reasoning capability. We upgrade NMNs by: (a) bridging the gap between its interpreter and the complex questions; (b) introducing addition and subtraction modules that perform numerical reasoning over numbers. On a subset of DROP, experimental results show that our proposed methods enhance NMNs’ numerical reasoning skills by 17.7% improvement of F1 score and significantly outperform previous state-of-the-art models.
Numerical reasoning skills are essential for complex question answering (CQA) over text. It requires opertaions including counting, comparison, addition and subtraction. A successful approach to CQA on text, Neural Module Networks (NMNs), follows the programmer-interpreter paradigm and leverages specialised modules to perform compositional reasoning. However, the NMNs framework does not consider the relationship between numbers and entities in both questions and paragraphs. We propose effective techniques to improve NMNs’ numerical reasoning capabilities by making the interpreter question-aware and capturing the relationship between entities and numbers. On the same subset of the DROP dataset for CQA on text, experimental results show that our additions outperform the original NMNs by 3.0 points for the overall F1 score.
The ability to generate natural-language questions with controlled complexity levels is highly desirable as it further expands the applicability of question generation. In this paper, we propose an end-to-end neural complexity-controllable question generation model, which incorporates a mixture of experts (MoE) as the selector of soft templates to improve the accuracy of complexity control and the quality of generated questions. The soft templates capture question similarity while avoiding the expensive construction of actual templates. Our method introduces a novel, cross-domain complexity estimator to assess the complexity of a question, taking into account the passage, the question, the answer and their interactions. The experimental results on two benchmark QA datasets demonstrate that our QG model is superior to state-of-the-art methods in both automatic and manual evaluation. Moreover, our complexity estimator is significantly more accurate than the baselines in both in-domain and out-domain settings.
Question generation (QG) has recently attracted considerable attention. Most of the current neural models take as input only one or two sentences, and perform poorly when multiple sentences or complete paragraphs are given as input. However, in real-world scenarios it is very important to be able to generate high-quality questions from complete paragraphs. In this paper, we present a simple yet effective technique for answer-aware question generation from paragraphs. We augment a basic sequence-to-sequence QG model with dynamic, paragraph-specific dictionary and copy attention that is persistent across the corpus, without requiring features generated by sophisticated NLP pipelines or handcrafted rules. Our evaluation on SQuAD shows that our model significantly outperforms current state-of-the-art systems in question generation from paragraphs in both automatic and human evaluation. We achieve a 6-point improvement over the best system on BLEU-4, from 16.38 to 22.62.
Question generation over knowledge bases (KBQG) aims at generating natural-language questions about a subgraph, i.e. a set of triples. Two main challenges still face the current crop of encoder-decoder-based methods, especially on small subgraphs: (1) low diversity and poor fluency due to the limited information contained in the subgraphs, and (2) semantic drift due to the decoder’s oblivion of the semantics of the answer entity. We propose an innovative knowledge-enriched, type-constrained and grammar-guided KBQG model, named KTG, to addresses the above challenges. In our model, the encoder is equipped with auxiliary information from the KB, and the decoder is constrained with word types during QG. Specifically, entity domain and description, as well as relation hierarchy information are considered to construct question contexts, while a conditional copy mechanism is incorporated to modulate question semantics according to current word types. Besides, a novel reward function featuring grammatical similarity is designed to improve both generative richness and syntactic correctness via reinforcement learning. Extensive experiments show that our proposed model outperforms existing methods by a significant margin on two widely-used benchmark datasets SimpleQuestion and PathQuestion.
Complex question answering (CQA) over raw text is a challenging task. A prominent approach to this task is based on the programmer-interpreter framework, where the programmer maps the question into a sequence of reasoning actions and the interpreter then executes these actions on the raw text. Learning an effective CQA model requires large amounts of human-annotated data, consisting of the ground-truth sequence of reasoning actions, which is time-consuming and expensive to collect at scale. In this paper, we address the challenge of learning a high-quality programmer (parser) by projecting natural human-generated questions into unnatural machine-generated questions which are more convenient to parse. We firstly generate synthetic (question, action sequence) pairs by a data generator, and train a semantic parser that associates synthetic questions with their corresponding action sequences. To capture the diversity when applied to natural questions, we learn a projection model to map natural questions into their most similar unnatural questions for which the parser can work well. Without any natural training data, our projection model provides high-quality action sequences for the CQA task. Experimental results show that the QA model trained exclusively with synthetic data outperforms its state-of-the-art counterpart trained on human-labeled data.
Complex question-answering (CQA) involves answering complex natural-language questions on a knowledge base (KB). However, the conventional neural program induction (NPI) approach exhibits uneven performance when the questions have different types, harboring inherently different characteristics, e.g., difficulty level. This paper proposes a meta-reinforcement learning approach to program induction in CQA to tackle the potential distributional bias in questions. Our method quickly and effectively adapts the meta-learned programmer to new questions based on the most similar questions retrieved from the training data. The meta-learned policy is then used to learn a good programming policy, utilizing the trial trajectories and their rewards for similar questions in the support set. Our method achieves state-of-the-art performance on the CQA dataset (Saha et al., 2018) while using only five trial trajectories for the top-5 retrieved questions in each support set, and meta-training on tasks constructed from only 1% of the training set. We have released our code at https://github.com/DevinJake/MRL-CQA.
Automatic question generation (QG) is a useful yet challenging task in NLP. Recent neural network-based approaches represent the state-of-the-art in this task. In this work, we attempt to strengthen them significantly by adopting a holistic and novel generator-evaluator framework that directly optimizes objectives that reward semantics and structure. The generator is a sequence-to-sequence model that incorporates the structure and semantics of the question being generated. The generator predicts an answer in the passage that the question can pivot on. Employing the copy and coverage mechanisms, it also acknowledges other contextually important (and possibly rare) keywords in the passage that the question needs to conform to, while not redundantly repeating words. The evaluator model evaluates and assigns a reward to each predicted question based on its conformity to the structure of ground-truth questions. We propose two novel QG-specific reward functions for text conformity and answer conformity of the generated question. The evaluator also employs structure-sensitive rewards based on evaluation measures such as BLEU, GLEU, and ROUGE-L, which are suitable for QG. In contrast, most of the previous works only optimize the cross-entropy loss, which can induce inconsistencies between training (objective) and testing (evaluation) measures. Our evaluation shows that our approach significantly outperforms state-of-the-art systems on the widely-used SQuAD benchmark as per both automatic and human evaluation.
Generating syntactically and semantically valid and relevant questions from paragraphs is useful with many applications. Manual generation is a labour-intensive task, as it requires the reading, parsing and understanding of long passages of text. A number of question generation models based on sequence-to-sequence techniques have recently been proposed. Most of them generate questions from sentences only, and none of them is publicly available as an easy-to-use service. In this paper, we demonstrate ParaQG, a Web-based system for generating questions from sentences and paragraphs. ParaQG incorporates a number of novel functionalities to make the question generation process user-friendly. It provides an interactive interface for a user to select answers with visual insights on generation of questions. It also employs various faceted views to group similar questions as well as filtering techniques to eliminate unanswerable questions.