Yu Gu


2022

pdf
Clues Before Answers: Generation-Enhanced Multiple-Choice QA
Zixian Huang | Ao Wu | Jiaying Zhou | Yu Gu | Yue Zhao | Gong Cheng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

A trending paradigm for multiple-choice question answering (MCQA) is using a text-to-text framework. By unifying data in different tasks into a single text-to-text format, it trains a generative encoder-decoder model which is both powerful and universal. However, a side effect of twisting a generation target to fit the classification nature of MCQA is the under-utilization of the decoder and the knowledge that can be decoded. To exploit the generation capability and underlying knowledge of a pre-trained encoder-decoder model, in this paper, we propose a generation-enhanced MCQA model named GenMC. It generates a clue from the question and then leverages the clue to enhance a reader for MCQA. It outperforms text-to-text models on multiple MCQA datasets.

pdf
Dimension Reduction for Efficient Dense Retrieval via Conditional Autoencoder
Zhenghao Liu | Han Zhang | Chenyan Xiong | Zhiyuan Liu | Yu Gu | Xiaohua Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Dense retrievers encode queries and documents and map them in an embedding space using pre-trained language models. These embeddings need to be high-dimensional to fit training signals and guarantee the retrieval effectiveness of dense retrievers. However, these high-dimensional embeddings lead to larger index storage and higher retrieval latency. To reduce the embedding dimensions of dense retrieval, this paper proposes a Conditional Autoencoder (ConAE) to compress the high-dimensional embeddings to maintain the same embedding distribution and better recover the ranking features. Our experiments show that ConAE is effective in compressing embeddings by achieving comparable ranking performance with its teacher model and making the retrieval system more efficient. Our further analyses show that ConAE can alleviate the redundancy of the embeddings of dense retrieval with only one linear layer. All codes of this work are available at https://github.com/NEUIR/ConAE.

pdf
ArcaneQA: Dynamic Program Induction and Contextualized Encoding for Knowledge Base Question Answering
Yu Gu | Yu Su
Proceedings of the 29th International Conference on Computational Linguistics

Question answering on knowledge bases (KBQA) poses a unique challenge for semantic parsing research due to two intertwined challenges: large search space and ambiguities in schema linking. Conventional ranking-based KBQA models, which rely on a candidate enumeration step to reduce the search space, struggle with flexibility in predicting complicated queries and have impractical running time. In this paper, we present ArcaneQA, a novel generation-based model that addresses both the large search space and the schema linking challenges in a unified framework with two mutually boosting ingredients: dynamic program induction for tackling the large search space and dynamic contextualized encoding for schema linking. Experimental results on multiple popular KBQA datasets demonstrate the highly competitive performance of ArcaneQA in both effectiveness and efficiency.

2021

pdf
A Systematic Investigation of KB-Text Embedding Alignment at Scale
Vardaan Pahuja | Yu Gu | Wenhu Chen | Mehdi Bahrami | Lei Liu | Wei-Peng Chen | Yu Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge bases (KBs) and text often contain complementary knowledge: KBs store structured knowledge that can support long range reasoning, while text stores more comprehensive and timely knowledge in an unstructured way. Separately embedding the individual knowledge sources into vector spaces has demonstrated tremendous successes in encoding the respective knowledge, but how to jointly embed and reason with both knowledge sources to fully leverage the complementary information is still largely an open problem. We conduct a large-scale, systematic investigation of aligning KB and text embeddings for joint reasoning. We set up a novel evaluation framework with two evaluation tasks, few-shot link prediction and analogical reasoning, and evaluate an array of KB-text embedding alignment methods. We also demonstrate how such alignment can infuse textual information into KB embeddings for more accurate link prediction on emerging entities and events, using COVID-19 as a case study.