Yijin Liu


2022

pdf
Conditional Bilingual Mutual Information Based Adaptive Training for Neural Machine Translation
Songming Zhang | Yijin Liu | Fandong Meng | Yufeng Chen | Jinan Xu | Jian Liu | Jie Zhou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Token-level adaptive training approaches can alleviate the token imbalance problem and thus improve neural machine translation, through re-weighting the losses of different target tokens based on specific statistical metrics (e.g., token frequency or mutual information). Given that standard translation models make predictions on the condition of previous target contexts, we argue that the above statistical metrics ignore target context information and may assign inappropriate weights to target tokens. While one possible solution is to directly take target contexts into these statistical metrics, the target-context-aware statistical computing is extremely expensive, and the corresponding storage overhead is unrealistic. To solve the above issues, we propose a target-context-aware metric, named conditional bilingual mutual information (CBMI), which makes it feasible to supplement target context information for statistical metrics. Particularly, our CBMI can be formalized as the log quotient of the translation model probability and language model probability by decomposing the conditional joint distribution. Thus CBMI can be efficiently calculated during model training without any pre-specific statistical calculations and large storage overhead. Furthermore, we propose an effective adaptive training approach based on both the token- and sentence-level CBMI. Experimental results on WMT14 English-German and WMT19 Chinese-English tasks show our approach can significantly outperform the Transformer baseline and other related methods.

2021

pdf
Scheduled Sampling Based on Decoding Steps for Neural Machine Translation
Yijin Liu | Fandong Meng | Yufeng Chen | Jinan Xu | Jie Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Scheduled sampling is widely used to mitigate the exposure bias problem for neural machine translation. Its core motivation is to simulate the inference scene during training by replacing ground-truth tokens with predicted tokens, thus bridging the gap between training and inference. However, vanilla scheduled sampling is merely based on training steps and equally treats all decoding steps. Namely, it simulates an inference scene with uniform error rates, which disobeys the real inference scene, where larger decoding steps usually have higher error rates due to error accumulations. To alleviate the above discrepancy, we propose scheduled sampling methods based on decoding steps, increasing the selection chance of predicted tokens with the growth of decoding steps. Consequently, we can more realistically simulate the inference scene during training, thus better bridging the gap between training and inference. Moreover, we investigate scheduled sampling based on both training steps and decoding steps for further improvements. Experimentally, our approaches significantly outperform the Transformer baseline and vanilla scheduled sampling on three large-scale WMT tasks. Additionally, our approaches also generalize well to the text summarization task on two popular benchmarks.

pdf
Confidence-Aware Scheduled Sampling for Neural Machine Translation
Yijin Liu | Fandong Meng | Yufeng Chen | Jinan Xu | Jie Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Prevent the Language Model from being Overconfident in Neural Machine Translation
Mengqi Miao | Fandong Meng | Yijin Liu | Xiao-Hua Zhou | Jie Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The Neural Machine Translation (NMT) model is essentially a joint language model conditioned on both the source sentence and partial translation. Therefore, the NMT model naturally involves the mechanism of the Language Model (LM) that predicts the next token only based on partial translation. Despite its success, NMT still suffers from the hallucination problem, generating fluent but inadequate translations. The main reason is that NMT pays excessive attention to the partial translation while neglecting the source sentence to some extent, namely overconfidence of the LM. Accordingly, we define the Margin between the NMT and the LM, calculated by subtracting the predicted probability of the LM from that of the NMT model for each token. The Margin is negatively correlated to the overconfidence degree of the LM. Based on the property, we propose a Margin-based Token-level Objective (MTO) and a Margin-based Sentence-level Objective (MSO) to maximize the Margin for preventing the LM from being overconfident. Experiments on WMT14 English-to-German, WMT19 Chinese-to-English, and WMT14 English-to-French translation tasks demonstrate the effectiveness of our approach, with 1.36, 1.50, and 0.63 BLEU improvements, respectively, compared to the Transformer baseline. The human evaluation further verifies that our approaches improve translation adequacy as well as fluency.

pdf
Bilingual Mutual Information Based Adaptive Training for Neural Machine Translation
Yangyifan Xu | Yijin Liu | Fandong Meng | Jiajun Zhang | Jinan Xu | Jie Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Recently, token-level adaptive training has achieved promising improvement in machine translation, where the cross-entropy loss function is adjusted by assigning different training weights to different tokens, in order to alleviate the token imbalance problem. However, previous approaches only use static word frequency information in the target language without considering the source language, which is insufficient for bilingual tasks like machine translation. In this paper, we propose a novel bilingual mutual information (BMI) based adaptive objective, which measures the learning difficulty for each target token from the perspective of bilingualism, and assigns an adaptive weight accordingly to improve token-level adaptive training. This method assigns larger training weights to tokens with higher BMI, so that easy tokens are updated with coarse granularity while difficult tokens are updated with fine granularity. Experimental results on WMT14 English-to-German and WMT19 Chinese-to-English demonstrate the superiority of our approach compared with the Transformer baseline and previous token-level adaptive training approaches. Further analyses confirm that our method can improve the lexical diversity.

pdf
WeChat Neural Machine Translation Systems for WMT21
Xianfeng Zeng | Yijin Liu | Ernan Li | Qiu Ran | Fandong Meng | Peng Li | Jinan Xu | Jie Zhou
Proceedings of the Sixth Conference on Machine Translation

This paper introduces WeChat AI’s participation in WMT 2021 shared news translation task on English->Chinese, English->Japanese, Japanese->English and English->German. Our systems are based on the Transformer (Vaswani et al., 2017) with several novel and effective variants. In our experiments, we employ data filtering, large-scale synthetic data generation (i.e., back-translation, knowledge distillation, forward-translation, iterative in-domain knowledge transfer), advanced finetuning approaches, and boosted Self-BLEU based model ensemble. Our constrained systems achieve 36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU scores on English->Chinese, English->Japanese, Japanese->English and English->German, respectively. The BLEU scores of English->Chinese, English->Japanese and Japanese->English are the highest among all submissions, and that of English->German is the highest among all constrained submissions.

2020

pdf
WeChat Neural Machine Translation Systems for WMT20
Fandong Meng | Jianhao Yan | Yijin Liu | Yuan Gao | Xianfeng Zeng | Qinsong Zeng | Peng Li | Ming Chen | Jie Zhou | Sifan Liu | Hao Zhou
Proceedings of the Fifth Conference on Machine Translation

We participate in the WMT 2020 shared newstranslation task on Chinese→English. Our system is based on the Transformer (Vaswaniet al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese→English system achieves 36.9 case-sensitive BLEU score, which is thehighest among all submissions.

2019

pdf
GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence Labeling
Yijin Liu | Fandong Meng | Jinchao Zhang | Jinan Xu | Yufeng Chen | Jie Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Current state-of-the-art systems for sequence labeling are typically based on the family of Recurrent Neural Networks (RNNs). However, the shallow connections between consecutive hidden states of RNNs and insufficient modeling of global information restrict the potential performance of those models. In this paper, we try to address these issues, and thus propose a Global Context enhanced Deep Transition architecture for sequence labeling named GCDT. We deepen the state transition path at each position in a sentence, and further assign every token with a global representation learned from the entire sentence. Experiments on two standard sequence labeling tasks show that, given only training data and the ubiquitous word embeddings (Glove), our GCDT achieves 91.96 F1 on the CoNLL03 NER task and 95.43 F1 on the CoNLL2000 Chunking task, which outperforms the best reported results under the same settings. Furthermore, by leveraging BERT as an additional resource, we establish new state-of-the-art results with 93.47 F1 on NER and 97.30 F1 on Chunking.

pdf
CM-Net: A Novel Collaborative Memory Network for Spoken Language Understanding
Yijin Liu | Fandong Meng | Jinchao Zhang | Jie Zhou | Yufeng Chen | Jinan Xu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Spoken Language Understanding (SLU) mainly involves two tasks, intent detection and slot filling, which are generally modeled jointly in existing works. However, most existing models fail to fully utilize cooccurrence relations between slots and intents, which restricts their potential performance. To address this issue, in this paper we propose a novel Collaborative Memory Network (CM-Net) based on the well-designed block, named CM-block. The CM-block firstly captures slot-specific and intent-specific features from memories in a collaborative manner, and then uses these enriched features to enhance local context representations, based on which the sequential information flow leads to more specific (slot and intent) global utterance representations. Through stacking multiple CM-blocks, our CM-Net is able to alternately perform information exchange among specific memories, local contexts and the global utterance, and thus incrementally enriches each other. We evaluate the CM-Net on two standard benchmarks (ATIS and SNIPS) and a self-collected corpus (CAIS). Experimental results show that the CM-Net achieves the state-of-the-art results on the ATIS and SNIPS in most of criteria, and significantly outperforms the baseline models on the CAIS. Additionally, we make the CAIS dataset publicly available for the research community.