Yihui Li


Boundary-Driven Table-Filling for Aspect Sentiment Triplet Extraction
Yice Zhang | Yifan Yang | Yihui Li | Bin Liang | Shiwei Chen | Yixue Dang | Min Yang | Ruifeng Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Aspect Sentiment Triplet Extraction (ASTE) aims to extract the aspect terms along with the corresponding opinion terms and the expressed sentiments in the review, which is an important task in sentiment analysis. Previous research efforts generally address the ASTE task in an end-to-end fashion through the table-filling formalization, in which the triplets are represented by a two-dimensional (2D) table of word-pair relations. Under this formalization, a term-level relation is decomposed into multiple independent word-level relations, which leads to relation inconsistency and boundary insensitivity in the face of multi-word aspect terms and opinion terms. To overcome these issues, we propose Boundary-Driven Table-Filling (BDTF), which represents each triplet as a relation region in the 2D table and transforms the ASTE task into detection and classification of relation regions. We also notice that the quality of the table representation greatly affects the performance of BDTF. Therefore, we develop an effective relation representation learning approach to learn the table representation, which can fully exploit both word-to-word interactions and relation-to-relation interactions. Experiments on several public benchmarks show that the proposed approach achieves state-of-the-art performances.

HITSZ-HLT at SemEval-2022 Task 10: A Span-Relation Extraction Framework for Structured Sentiment Analysis
Yihui Li | Yifan Yang | Yice Zhang | Ruifeng Xu
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our system that participated in the SemEval-2022 Task 10: Structured Sentiment Analysis, which aims to extract opinion tuples from texts.A full opinion tuple generally contains an opinion holder, an opinion target, the sentiment expression, and the corresponding polarity.The complex structure of the opinion tuple makes the task challenging.To address this task, we formalize it as a span-relation extraction problem and propose a two-stage extraction framework accordingly.In the first stage, we employ the span module to enumerate spans and then recognize the type of every span.In the second stage, we employ the relation module to determine the relation between spans.Our system achieves competitive results and ranks among the top-10 systems in almost subtasks.