Yifan Song


2022

pdf
Calibrating Factual Knowledge in Pretrained Language Models
Qingxiu Dong | Damai Dai | Yifan Song | Jingjing Xu | Zhifang Sui | Lei Li
Findings of the Association for Computational Linguistics: EMNLP 2022

Previous literature has proved that Pretrained Language Models (PLMs) can store factual knowledge. However, we find that facts stored in the PLMs are not always correct. It motivates us to explore a fundamental question: How do we calibrate factual knowledge in PLMs without re-training from scratch? In this work, we propose a simple and lightweight method CaliNet to achieve this goal. To be specific, we first detect whether PLMs can learn the right facts via a contrastive score between right and fake facts. If not, we then use a lightweight method to add and adapt new parameters to specific factual texts. Experiments on the knowledge probing task show the calibration effectiveness and efficiency. In addition, through closed-book question answering, we find that the calibrated PLM possesses knowledge generalization ability after finetuning.Beyond the calibration performance, we further investigate and visualize the knowledge calibration mechanism.

pdf
Learning Robust Representations for Continual Relation Extraction via Adversarial Class Augmentation
Peiyi Wang | Yifan Song | Tianyu Liu | Binghuai Lin | Yunbo Cao | Sujian Li | Zhifang Sui
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Continual relation extraction (CRE) aims to continually learn new relations from a class-incremental data stream. CRE model usually suffers from catastrophic forgetting problem, i.e., the performance of old relations seriously degrades when the model learns new relations. Most previous work attributes catastrophic forgetting to the corruption of the learned representations as new relations come, with an implicit assumption that the CRE models have adequately learned the old relations. In this paper, through empirical studies we argue that this assumption may not hold, and an important reason for catastrophic forgetting is that the learned representations do not have good robustness against the appearance of analogous relations in the subsequent learning process. To address this issue, we encourage the model to learn more precise and robust representations through a simple yet effective adversarial class augmentation mechanism (ACA), which is easy to implement and model-agnostic.Experimental results show that ACA can consistently improve the performance of state-of-the-art CRE models on two popular benchmarks.

pdf
The USTC-NELSLIP Offline Speech Translation Systems for IWSLT 2022
Weitai Zhang | Zhongyi Ye | Haitao Tang | Xiaoxi Li | Xinyuan Zhou | Jing Yang | Jianwei Cui | Pan Deng | Mohan Shi | Yifan Song | Dan Liu | Junhua Liu | Lirong Dai
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes USTC-NELSLIP’s submissions to the IWSLT 2022 Offline Speech Translation task, including speech translation of talks from English to German, English to Chinese and English to Japanese. We describe both cascaded architectures and end-to-end models which can directly translate source speech into target text. In the cascaded condition, we investigate the effectiveness of different model architectures with robust training and achieve 2.72 BLEU improvements over last year’s optimal system on MuST-C English-German test set. In the end-to-end condition, we build models based on Transformer and Conformer architectures, achieving 2.26 BLEU improvements over last year’s optimal end-to-end system. The end-to-end system has obtained promising results, but it is still lagging behind our cascaded models.

pdf
ConFiguRe: Exploring Discourse-level Chinese Figures of Speech
Dawei Zhu | Qiusi Zhan | Zhejian Zhou | Yifan Song | Jiebin Zhang | Sujian Li
Proceedings of the 29th International Conference on Computational Linguistics

Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe.