Yichun Yin


2022

pdf
bert2BERT: Towards Reusable Pretrained Language Models
Cheng Chen | Yichun Yin | Lifeng Shang | Xin Jiang | Yujia Qin | Fengyu Wang | Zhi Wang | Xiao Chen | Zhiyuan Liu | Qun Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In recent years, researchers tend to pre-train ever-larger language models to explore the upper limit of deep models. However, large language model pre-training costs intensive computational resources, and most of the models are trained from scratch without reusing the existing pre-trained models, which is wasteful. In this paper, we propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model through parameter initialization and significantly improve the pre-training efficiency of the large model. Specifically, we extend the previous function-preserving method proposed in computer vision on the Transformer-based language model, and further improve it by proposing a novel method, advanced knowledge for large model’s initialization. In addition, a two-stage learning method is proposed to further accelerate the pre-training. We conduct extensive experiments on representative PLMs (e.g., BERT and GPT) and demonstrate that (1) our method can save a significant amount of training cost compared with baselines including learning from scratch, StackBERT and MSLT; (2) our method is generic and applicable to different types of pre-trained models. In particular, bert2BERT saves about 45% and 47% computational cost of pre-training BERT\rm BASE and GPT\rm BASE by reusing the models of almost their half sizes.

pdf
FPT: Improving Prompt Tuning Efficiency via Progressive Training
Yufei Huang | Yujia Qin | Huadong Wang | Yichun Yin | Maosong Sun | Zhiyuan Liu | Qun Liu
Findings of the Association for Computational Linguistics: EMNLP 2022

Recently, prompt tuning (PT) has gained increasing attention as a parameter-efficient way of tuning pre-trained language models (PLMs). Despite extensively reducing the number of tunable parameters and achieving satisfying performance, PT is training-inefficient due to its slow convergence. To improve PT’s training efficiency, we first make some novel observations about the prompt transferability of “partial PLMs”, which are defined by compressing a PLM in depth or width. We observe that the soft prompts learned by different partial PLMs of various sizes are similar in the parameter space, implying that these soft prompts could potentially be transferred among partial PLMs. Inspired by these observations, we propose Fast Prompt Tuning (FPT), which starts by conducting PT using a small-scale partial PLM, and then progressively expands its depth and width until the full-model size. After each expansion, we recycle the previously learned soft prompts as initialization for the enlarged partial PLM and then proceed PT. We demonstrate the feasibility of FPT on 5 tasks and show that FPT could save over 30% training computations while achieving comparable performance. The codes are publicly available at https://github.com/thunlp/FastPromptTuning.

pdf
G-MAP: General Memory-Augmented Pre-trained Language Model for Domain Tasks
Zhongwei Wan | Yichun Yin | Wei Zhang | Jiaxin Shi | Lifeng Shang | Guangyong Chen | Xin Jiang | Qun Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

General pre-trained language models (PLMs), such as BERT, have achieved remarkable performance on various NLP tasks. Recently, domain-specific PLMs have been proposed to boost the task performance of specific domains (e.g., biomedical and computer science) by continuing to pre-train general PLMs with domain-specific corpora. However, this domain-adaptive pre-training (DAPT (CITATION)) tends to forget the previous general knowledge acquired by general PLMs, which leads to a catastrophic forgetting phenomenon and sub-optimal performance. To alleviate this problem, we propose a new framework of Memory-Augmented Pre-trained Language Model (MAP), which augments the domain-specific PLM by a memory built from the frozen general PLM without losing the general knowledge. Specifically, we propose a new memory-augmented layer, and based on it, different augmentation strategies are explored to build memory and fusion memory into domain-specific PLM. We demonstrate the effectiveness of MAP on different domains (biomedical and computer science publications, news, and reviews) and different kinds (text classification, QA, NER) of tasks, and the extensive results show that the proposed MAP can achieve SOTA results on these tasks.

2021

pdf
Generate & Rank: A Multi-task Framework for Math Word Problems
Jianhao Shen | Yichun Yin | Lin Li | Lifeng Shang | Xin Jiang | Ming Zhang | Qun Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% to 85.4%) higher than the state-of-the-art. Code could be found at https://github.com/huawei-noah/noah-research.

pdf
AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained Language Models
Yichun Yin | Cheng Chen | Lifeng Shang | Xin Jiang | Xiao Chen | Qun Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. Few studies have been conducted to explore the design of architecture hyper-parameters in BERT, especially for the more efficient PLMs with tiny sizes, which are essential for practical deployment on resource-constrained devices. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters. Specifically, we carefully design the techniques of one-shot learning and the search space to provide an adaptive and efficient development way of tiny PLMs for various latency constraints. We name our method AutoTinyBERT and evaluate its effectiveness on the GLUE and SQuAD benchmarks. The extensive experiments show that our method outperforms both the SOTA search-based baseline (NAS-BERT) and the SOTA distillation-based methods (such as DistilBERT, TinyBERT, MiniLM, and MobileBERT). In addition, based on the obtained architectures, we propose a more efficient development method that is even faster than the development of a single PLM. The source code and models will be publicly available upon publication.

2020

pdf
TinyBERT: Distilling BERT for Natural Language Understanding
Xiaoqi Jiao | Yichun Yin | Lifeng Shang | Xin Jiang | Xiao Chen | Linlin Li | Fang Wang | Qun Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large “teacher” BERT can be effectively transferred to a small “student” TinyBERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT4 with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERT-Base on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT4 is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only ~28% parameters and ~31% inference time of them. Moreover, TinyBERT6 with 6 layers performs on-par with its teacher BERT-Base.

pdf
PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction
Yichun Yin | Chenguang Wang | Ming Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.

pdf
TernaryBERT: Distillation-aware Ultra-low Bit BERT
Wei Zhang | Lu Hou | Yichun Yin | Lifeng Shang | Xiao Chen | Xin Jiang | Qun Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformer-based pre-training models like BERT have achieved remarkable performance in many natural language processing tasks. However, these models are both computation and memory expensive, hindering their deployment to resource-constrained devices. In this work, we propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model. Specifically, we use both approximation-based and loss-aware ternarization methods and empirically investigate the ternarization granularity of different parts of BERT. Moreover, to reduce the accuracy degradation caused by lower capacity of low bits, we leverage the knowledge distillation technique in the training process. Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller.

2017

pdf
Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Document-level multi-aspect sentiment classification is an important task for customer relation management. In this paper, we model the task as a machine comprehension problem where pseudo question-answer pairs are constructed by a small number of aspect-related keywords and aspect ratings. A hierarchical iterative attention model is introduced to build aspectspecific representations by frequent and repeated interactions between documents and aspect questions. We adopt a hierarchical architecture to represent both word level and sentence level information, and use the attention operations for aspect questions and documents alternatively with the multiple hop mechanism. Experimental results on the TripAdvisor and BeerAdvocate datasets show that our model outperforms classical baselines. We will release our code and data for the method replicability.

pdf
NNEMBs at SemEval-2017 Task 4: Neural Twitter Sentiment Classification: a Simple Ensemble Method with Different Embeddings
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

Recently, neural twitter sentiment classification has become one of state-of-thearts, which relies less feature engineering work compared with traditional methods. In this paper, we propose a simple and effective ensemble method to further boost the performances of neural models. We collect several word embedding sets which are publicly released (often are learned on different corpus) or constructed by running Skip-gram on released large-scale corpus. We make an assumption that different word embeddings cover different words and encode different semantic knowledge, thus using them together can improve the generalizations and performances of neural models. In the SemEval 2017, our method ranks 1st in Accuracy, 5th in AverageR. Meanwhile, the additional comparisons demonstrate the superiority of our model over these ones based on only one word embedding set. We release our code for the method duplicability.

2015

pdf
Splusplus: A Feature-Rich Two-stage Classifier for Sentiment Analysis of Tweets
Li Dong | Furu Wei | Yichun Yin | Ming Zhou | Ke Xu
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)