Yi Chu
2022
The Viability of Best-worst Scaling and Categorical Data Label Annotation Tasks in Detecting Implicit Bias
Parker Glenn
|
Cassandra L. Jacobs
|
Marvin Thielk
|
Yi Chu
Proceedings of the 1st Workshop on Perspectivist Approaches to NLP @LREC2022
Annotating workplace bias in text is a noisy and subjective task. In encoding the inherently continuous nature of bias, aggregated binary classifications do not suffice. Best-worst scaling (BWS) offers a framework to obtain real-valued scores through a series of comparative evaluations, but it is often impractical to deploy to traditional annotation pipelines within industry. We present analyses of a small-scale bias dataset, jointly annotated with categorical annotations and BWS annotations. We show that there is a strong correlation between observed agreement and BWS score (Spearman’s r=0.72). We identify several shortcomings of BWS relative to traditional categorical annotation: (1) When compared to categorical annotation, we estimate BWS takes approximately 4.5x longer to complete; (2) BWS does not scale well to large annotation tasks with sparse target phenomena; (3) The high correlation between BWS and the traditional task shows that the benefits of BWS can be recovered from a simple categorically annotated, non-aggregated dataset.
Search