Yftah Ziser


2022

pdf
Understanding Domain Learning in Language Models Through Subpopulation Analysis
Zheng Zhao | Yftah Ziser | Shay Cohen
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

We investigate how different domains are encoded in modern neural network architectures. We analyze the relationship between natural language domains, model size, and the amount of training data used. The primary analysis tool we develop is based on subpopulation analysis with Singular Vector Canonical Correlation Analysis (SVCCA), which we apply to Transformer-based language models (LMs). We compare the latent representations of such a language model at its different layers from a pair of models: a model trained on multiple domains (an experimental model) and a model trained on a single domain (a control model). Through our method, we find that increasing the model capacity impacts how domain information is stored in upper and lower layers differently. In addition, we show that larger experimental models simultaneously embed domain-specific information as if they were conjoined control models. These findings are confirmed qualitatively, demonstrating the validity of our method.

pdf
Factorizing Content and Budget Decisions in Abstractive Summarization of Long Documents
Marcio Fonseca | Yftah Ziser | Shay B. Cohen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We argue that disentangling content selection from the budget used to cover salient content improves the performance and applicability of abstractive summarizers. Our method, FactorSum, does this disentanglement by factorizing summarization into two steps through an energy function: (1) generation of abstractive summary views covering salient information in subsets of the input document (document views); (2) combination of these views into a final summary, following a budget and content guidance. This guidance may come from different sources, including from an advisor model such as BART or BigBird, or in oracle mode – from the reference. This factorization achieves significantly higher ROUGE scores on multiple benchmarks for long document summarization, namely PubMed, arXiv, and GovReport. Most notably, our model is effective for domain adaptation. When trained only on PubMed samples, it achieves a 46.29 ROUGE-1 score on arXiv, outperforming PEGASUS trained in domain by a large margin. Our experimental results indicate that the performance gains are due to more flexible budget adaptation and processing of shorter contexts provided by partial document views.

2021

pdf
DILBERT: Customized Pre-Training for Domain Adaptation with Category Shift, with an Application to Aspect Extraction
Entony Lekhtman | Yftah Ziser | Roi Reichart
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The rise of pre-trained language models has yielded substantial progress in the vast majority of Natural Language Processing (NLP) tasks. However, a generic approach towards the pre-training procedure can naturally be sub-optimal in some cases. Particularly, fine-tuning a pre-trained language model on a source domain and then applying it to a different target domain, results in a sharp performance decline of the eventual classifier for many source-target domain pairs. Moreover, in some NLP tasks, the output categories substantially differ between domains, making adaptation even more challenging. This, for example, happens in the task of aspect extraction, where the aspects of interest of reviews of, e.g., restaurants or electronic devices may be very different. This paper presents a new fine-tuning scheme for BERT, which aims to address the above challenges. We name this scheme DILBERT: Domain Invariant Learning with BERT, and customize it for aspect extraction in the unsupervised domain adaptation setting. DILBERT harnesses the categorical information of both the source and the target domains to guide the pre-training process towards a more domain and category invariant representation, thus closing the gap between the domains. We show that DILBERT yields substantial improvements over state-of-the-art baselines while using a fraction of the unlabeled data, particularly in more challenging domain adaptation setups.

pdf bib
Proceedings of the Second Workshop on Domain Adaptation for NLP
Eyal Ben-David | Shay Cohen | Ryan McDonald | Barbara Plank | Roi Reichart | Guy Rotman | Yftah Ziser
Proceedings of the Second Workshop on Domain Adaptation for NLP

pdf
WikiSum: Coherent Summarization Dataset for Efficient Human-Evaluation
Nachshon Cohen | Oren Kalinsky | Yftah Ziser | Alessandro Moschitti
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Recent works made significant advances on summarization tasks, facilitated by summarization datasets. Several existing datasets have the form of coherent-paragraph summaries. However, these datasets were curated from academic documents that were written for experts, thus making the essential step of assessing the summarization output through human-evaluation very demanding. To overcome these limitations, we present a dataset based on article summaries appearing on the WikiHow website, composed of how-to articles and coherent-paragraph summaries written in plain language. We compare our dataset attributes to existing ones, including readability and world-knowledge, showing our dataset makes human evaluation significantly easier and thus, more effective. A human evaluation conducted on PubMed and the proposed dataset reinforces our findings.

pdf
Answering Product-Questions by Utilizing Questions from Other Contextually Similar Products
Ohad Rozen | David Carmel | Avihai Mejer | Vitaly Mirkis | Yftah Ziser
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Predicting the answer to a product-related question is an emerging field of research that recently attracted a lot of attention. Answering subjective and opinion-based questions is most challenging due to the dependency on customer generated content. Previous works mostly focused on review-aware answer prediction; however, these approaches fail for new or unpopular products, having no (or only a few) reviews at hand. In this work, we propose a novel and complementary approach for predicting the answer for such questions, based on the answers for similar questions asked on similar products. We measure the contextual similarity between products based on the answers they provide for the same question. A mixture-of-expert framework is used to predict the answer by aggregating the answers from contextually similar products. Empirical results demonstrate that our model outperforms strong baselines on some segments of questions, namely those that have roughly ten or more similar resolved questions in the corpus. We additionally publish two large-scale datasets used in this work, one is of similar product question pairs, and the second is of product question-answer pairs.

2019

pdf
Task Refinement Learning for Improved Accuracy and Stability of Unsupervised Domain Adaptation
Yftah Ziser | Roi Reichart
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pivot Based Language Modeling (PBLM) (Ziser and Reichart, 2018a), combining LSTMs with pivot-based methods, has yielded significant progress in unsupervised domain adaptation. However, this approach is still challenged by the large pivot detection problem that should be solved, and by the inherent instability of LSTMs. In this paper we propose a Task Refinement Learning (TRL) approach, in order to solve these problems. Our algorithms iteratively train the PBLM model, gradually increasing the information exposed about each pivot. TRL-PBLM achieves stateof- the-art accuracy in six domain adaptation setups for sentiment classification. Moreover, it is much more stable than plain PBLM across model configurations, making the model much better fitted for practical use.

2018

pdf
Deep Pivot-Based Modeling for Cross-language Cross-domain Transfer with Minimal Guidance
Yftah Ziser | Roi Reichart
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

While cross-domain and cross-language transfer have long been prominent topics in NLP research, their combination has hardly been explored. In this work we consider this problem, and propose a framework that builds on pivot-based learning, structure-aware Deep Neural Networks (particularly LSTMs and CNNs) and bilingual word embeddings, with the goal of training a model on labeled data from one (language, domain) pair so that it can be effectively applied to another (language, domain) pair. We consider two setups, differing with respect to the unlabeled data available for model training. In the full setup the model has access to unlabeled data from both pairs, while in the lazy setup, which is more realistic for truly resource-poor languages, unlabeled data is available for both domains but only for the source language. We design our model for the lazy setup so that for a given target domain, it can train once on the source language and then be applied to any target language without re-training. In experiments with nine English-German and nine English-French domain pairs our best model substantially outperforms previous models even when it is trained in the lazy setup and previous models are trained in the full setup.

pdf
Pivot Based Language Modeling for Improved Neural Domain Adaptation
Yftah Ziser | Roi Reichart
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Representation learning with pivot-based methods and with Neural Networks (NNs) have lead to significant progress in domain adaptation for Natural Language Processing. However, most previous work that follows these approaches does not explicitly exploit the structure of the input text, and its output is most often a single representation vector for the entire text. In this paper we present the Pivot Based Language Model (PBLM), a representation learning model that marries together pivot-based and NN modeling in a structure aware manner. Particularly, our model processes the information in the text with a sequential NN (LSTM) and its output consists of a representation vector for every input word. Unlike most previous representation learning models in domain adaptation, PBLM can naturally feed structure aware text classifiers such as LSTM and CNN. We experiment with the task of cross-domain sentiment classification on 20 domain pairs and show substantial improvements over strong baselines.

2017

pdf
Neural Structural Correspondence Learning for Domain Adaptation
Yftah Ziser | Roi Reichart
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

We introduce a neural network model that marries together ideas from two prominent strands of research on domain adaptation through representation learning: structural correspondence learning (SCL, (Blitzer et al., 2006)) and autoencoder neural networks (NNs). Our model is a three-layer NN that learns to encode the non-pivot features of an input example into a low dimensional representation, so that the existence of pivot features (features that are prominent in both domains and convey useful information for the NLP task) in the example can be decoded from that representation. The low-dimensional representation is then employed in a learning algorithm for the task. Moreover, we show how to inject pre-trained word embeddings into our model in order to improve generalization across examples with similar pivot features. We experiment with the task of cross-domain sentiment classification on 16 domain pairs and show substantial improvements over strong baselines.