Yew Ken Chia


2022

pdf
RelationPrompt: Leveraging Prompts to Generate Synthetic Data for Zero-Shot Relation Triplet Extraction
Yew Ken Chia | Lidong Bing | Soujanya Poria | Luo Si
Findings of the Association for Computational Linguistics: ACL 2022

Despite the importance of relation extraction in building and representing knowledge, less research is focused on generalizing to unseen relations types. We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE) to encourage further research in low-resource relation extraction methods. Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage. To solve ZeroRTE, we propose to synthesize relation examples by prompting language models to generate structured texts. Concretely, we unify language model prompts and structured text approaches to design a structured prompt template for generating synthetic relation samples when conditioning on relation label prompts (RelationPrompt). To overcome the limitation for extracting multiple relation triplets in a sentence, we design a novel Triplet Search Decoding method. Experiments on FewRel and Wiki-ZSL datasets show the efficacy of RelationPrompt for the ZeroRTE task and zero-shot relation classification. Our code and data are available at github.com/declare-lab/RelationPrompt.

pdf
A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach
Yew Ken Chia | Lidong Bing | Sharifah Mahani Aljunied | Luo Si | Soujanya Poria
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Relation extraction has the potential for large-scale knowledge graph construction, but current methods do not consider the qualifier attributes for each relation triplet, such as time, quantity or location. The qualifiers form hyper-relational facts which better capture the rich and complex knowledge graph structure. For example, the relation triplet (Leonard Parker, Educated At, Harvard University) can be factually enriched by including the qualifier (End Time, 1967). Hence, we propose the task of hyper-relational extraction to extract more specific and complete facts from text. To support the task, we construct HyperRED, a large-scale and general-purpose dataset. Existing models cannot perform hyper-relational extraction as it requires a model to consider the interaction between three entities. Hence, we propose CubeRE, a cube-filling model inspired by table-filling approaches and explicitly considers the interaction between relation triplets and qualifiers. To improve model scalability and reduce negative class imbalance, we further propose a cube-pruning method. Our experiments show that CubeRE outperforms strong baselines and reveal possible directions for future research. Our code and data are available at github.com/declare-lab/HyperRED.

2021

pdf
Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Lu Xu | Yew Ken Chia | Lidong Bing
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.

2020

pdf
Red Dragon AI at TextGraphs 2020 Shared Task : LIT : LSTM-Interleaved Transformer for Multi-Hop Explanation Ranking
Yew Ken Chia | Sam Witteveen | Martin Andrews
Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)

Explainable question answering for science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. To counter the limitations of methods that view each query-document pair in isolation, we propose the LSTM-Interleaved Transformer which incorporates cross-document interactions for improved multi-hop ranking. The LIT architecture can leverage prior ranking positions in the re-ranking setting. Our model is competitive on the current leaderboard for the TextGraphs 2020 shared task, achieving a test-set MAP of 0.5607, and would have gained third place had we submitted before the competition deadline. Our code implementation is made available at [https://github.com/mdda/worldtree_corpus/tree/textgraphs_2020](https://github.com/mdda/worldtree_corpus/tree/textgraphs_2020).

2019

pdf
Red Dragon AI at TextGraphs 2019 Shared Task: Language Model Assisted Explanation Generation
Yew Ken Chia | Sam Witteveen | Martin Andrews
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

The TextGraphs-13 Shared Task on Explanation Regeneration (Jansen and Ustalov, 2019) asked participants to develop methods to reconstruct gold explanations for elementary science questions. Red Dragon AI’s entries used the language of the questions and explanation text directly, rather than a constructing a separate graph-like representation. Our leaderboard submission placed us 3rd in the competition, but we present here three methods of increasing sophistication, each of which scored successively higher on the test set after the competition close.