Xin Liu


2022

pdf
MMChat: Multi-Modal Chat Dataset on Social Media
Yinhe Zheng | Guanyi Chen | Xin Liu | Jian Sun
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Incorporating multi-modal contexts in conversation is an important step for developing more engaging dialogue systems. In this work, we explore this direction by introducing MMChat: a large scale Chinese multi-modal dialogue corpus (32.4M raw dialogues and 120.84K filtered dialogues). Unlike previous corpora that are crowd-sourced or collected from fictitious movies, MMChat contains image-grounded dialogues collected from real conversations on social media, in which the sparsity issue is observed. Specifically, image-initiated dialogues in common communications may deviate to some non-image-grounded topics as the conversation proceeds. To better investigate this issue, we manually annotate 100K dialogues from MMChat and further filter the corpus accordingly, which yields MMChat-hf. We develop a benchmark model to address the sparsity issue in dialogue generation tasks by adapting the attention routing mechanism on image features. Experiments demonstrate the usefulness of incorporating image features and the effectiveness in handling the sparsity of image features.

pdf
Getting the Most out of Simile Recognition
Xiaoyue Wang | Linfeng Song | Xin Liu | Chulun Zhou | Hualin Zeng | Jinsong Su
Findings of the Association for Computational Linguistics: EMNLP 2022

Simile recognition involves two subtasks: simile sentence classification that discriminates whether a sentence contains simile, and simile component extraction that locates the corresponding objects (i.e., tenors and vehicles).Recent work ignores features other than surface strings and suffers from the data hunger issue.We explore expressive features for this task to help achieve more effective data utilization.In particular, we study two types of features: 1) input-side features that include POS tags, dependency trees and word definitions, and 2) decoding features that capture the interdependence among various decoding decisions.We further construct a model named HGSR, which merges the input-side features as a heterogeneous graph and leverages decoding features via distillation.Experiments show that HGSR significantly outperforms the current state-of-the-art systems and carefully designed baselines, verifying the effectiveness of introduced features. We will release our code upon paper acceptance.

pdf
Complex Hyperbolic Knowledge Graph Embeddings with Fast Fourier Transform
Huiru Xiao | Xin Liu | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models.

2021

pdf
Leveraging Capsule Routing to Associate Knowledge with Medical Literature Hierarchically
Xin Liu | Qingcai Chen | Junying Chen | Wenxiu Zhou | Tingyu Liu | Xinlan Yang | Weihua Peng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Integrating knowledge into text is a promising way to enrich text representation, especially in the medical field. However, undifferentiated knowledge not only confuses the text representation but also imports unexpected noises. In this paper, to alleviate this problem, we propose leveraging capsule routing to associate knowledge with medical literature hierarchically (called HiCapsRKL). Firstly, HiCapsRKL extracts two empirically designed text fragments from medical literature and encodes them into fragment representations respectively. Secondly, the capsule routing algorithm is applied to two fragment representations. Through the capsule computing and dynamic routing, each representation is processed into a new representation (denoted as caps-representation), and we integrate the caps-representations as information gain to associate knowledge with medical literature hierarchically. Finally, HiCapsRKL are validated on relevance prediction and medical literature retrieval test sets. The experimental results and analyses show that HiCapsRKLcan more accurately associate knowledge with medical literature than mainstream methods. In summary, HiCapsRKL can efficiently help selecting the most relevant knowledge to the medical literature, which may be an alternative attempt to improve knowledge-based text representation. Source code is released on GitHub.

pdf
Cross-lingual Transfer for Text Classification with Dictionary-based Heterogeneous Graph
Nuttapong Chairatanakul | Noppayut Sriwatanasakdi | Nontawat Charoenphakdee | Xin Liu | Tsuyoshi Murata
Findings of the Association for Computational Linguistics: EMNLP 2021

In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can be infeasible because of the labeling cost, task characteristics, and privacy concerns. This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries. First, we construct a dictionary-based heterogeneous graph (DHG) from bilingual dictionaries. This opens the possibility to use graph neural networks for cross-lingual transfer. The remaining challenge is the heterogeneity of DHG because multiple languages are considered. To address this challenge, we propose dictionary-based heterogeneous graph neural network (DHGNet) that effectively handles the heterogeneity of DHG by two-step aggregations, which are word-level and language-level aggregations. Experimental results demonstrate that our method outperforms pretrained models even though it does not access to large corpora. Furthermore, it can perform well even though dictionaries contain many incorrect translations. Its robustness allows the usage of a wider range of dictionaries such as an automatically constructed dictionary and crowdsourced dictionary, which are convenient for real-world applications.

pdf
Exploring Discourse Structures for Argument Impact Classification
Xin Liu | Jiefu Ou | Yangqiu Song | Xin Jiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Discourse relations among arguments reveal logical structures of a debate conversation. However, no prior work has explicitly studied how the sequence of discourse relations influence a claim’s impact. This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument. We further propose DisCOC to inject and fuse the sentence-level structural discourse information with contextualized features derived from large-scale language models. Experimental results and extensive analysis show that the attention and gate mechanisms that explicitly model contexts and texts can indeed help the argument impact classification task defined by Durmus et al. (2019), and discourse structures among the context path of the claim to be classified can further boost the performance.

pdf
Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation
Xin Liu | Baosong Yang | Dayiheng Liu | Haibo Zhang | Weihua Luo | Min Zhang | Haiying Zhang | Jinsong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary.This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones.Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized.We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.

pdf
Multi-hop Graph Convolutional Network with High-order Chebyshev Approximation for Text Reasoning
Shuoran Jiang | Qingcai Chen | Xin Liu | Baotian Hu | Lisai Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Graph convolutional network (GCN) has become popular in various natural language processing (NLP) tasks with its superiority in long-term and non-consecutive word interactions. However, existing single-hop graph reasoning in GCN may miss some important non-consecutive dependencies. In this study, we define the spectral graph convolutional network with the high-order dynamic Chebyshev approximation (HDGCN), which augments the multi-hop graph reasoning by fusing messages aggregated from direct and long-term dependencies into one convolutional layer. To alleviate the over-smoothing in high-order Chebyshev approximation, a multi-vote-based cross-attention (MVCAttn) with linear computation complexity is also proposed. The empirical results on four transductive and inductive NLP tasks and the ablation study verify the efficacy of the proposed model.

2020

pdf
MedWriter: Knowledge-Aware Medical Text Generation
Youcheng Pan | Qingcai Chen | Weihua Peng | Xiaolong Wang | Baotian Hu | Xin Liu | Junying Chen | Wenxiu Zhou
Proceedings of the 28th International Conference on Computational Linguistics

To exploit the domain knowledge to guarantee the correctness of generated text has been a hot topic in recent years, especially for high professional domains such as medical. However, most of recent works only consider the information of unstructured text rather than structured information of the knowledge graph. In this paper, we focus on the medical topic-to-text generation task and adapt a knowledge-aware text generation model to the medical domain, named MedWriter, which not only introduces the specific knowledge from the external MKG but also is capable of learning graph-level representation. We conduct experiments on a medical literature dataset collected from medical journals, each of which has a set of topic words, an abstract of medical literature and a corresponding knowledge graph from CMeKG. Experimental results demonstrate incorporating knowledge graph into generation model can improve the quality of the generated text and has robust superiority over the competitor methods.

2019

pdf
A Variational Approach to Weakly Supervised Document-Level Multi-Aspect Sentiment Classification
Ziqian Zeng | Wenxuan Zhou | Xin Liu | Yangqiu Song
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we propose a variational approach to weakly supervised document-level multi-aspect sentiment classification. Instead of using user-generated ratings or annotations provided by domain experts, we use target-opinion word pairs as “supervision.” These word pairs can be extracted by using dependency parsers and simple rules. Our objective is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment polarity classifier to predict the sentiment polarity of each aspect given a document. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment polarity classifier to the objective via the variational lower bound. We can learn a sentiment polarity classifier by optimizing the lower bound. We show that our method can outperform weakly supervised baselines on TripAdvisor and BeerAdvocate datasets and can be comparable to the state-of-the-art supervised method with hundreds of labels per aspect.

pdf
Relation Discovery with Out-of-Relation Knowledge Base as Supervision
Yan Liang | Xin Liu | Jianwen Zhang | Yangqiu Song
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Unsupervised relation discovery aims to discover new relations from a given text corpus without annotated data. However, it does not consider existing human annotated knowledge bases even when they are relevant to the relations to be discovered. In this paper, we study the problem of how to use out-of-relation knowledge bases to supervise the discovery of unseen relations, where out-of-relation means that relations to discover from the text corpus and those in knowledge bases are not overlapped. We construct a set of constraints between entity pairs based on the knowledge base embedding and then incorporate constraints into the relation discovery by a variational auto-encoder based algorithm. Experiments show that our new approach can improve the state-of-the-art relation discovery performance by a large margin.

2018

pdf
LCQMC:A Large-scale Chinese Question Matching Corpus
Xin Liu | Qingcai Chen | Chong Deng | Huajun Zeng | Jing Chen | Dongfang Li | Buzhou Tang
Proceedings of the 27th International Conference on Computational Linguistics

The lack of large-scale question matching corpora greatly limits the development of matching methods in question answering (QA) system, especially for non-English languages. To ameliorate this situation, in this paper, we introduce a large-scale Chinese question matching corpus (named LCQMC), which is released to the public1. LCQMC is more general than paraphrase corpus as it focuses on intent matching rather than paraphrase. How to collect a large number of question pairs in variant linguistic forms, which may present the same intent, is the key point for such corpus construction. In this paper, we first use a search engine to collect large-scale question pairs related to high-frequency words from various domains, then filter irrelevant pairs by the Wasserstein distance, and finally recruit three annotators to manually check the left pairs. After this process, a question matching corpus that contains 260,068 question pairs is constructed. In order to verify the LCQMC corpus, we split it into three parts, i.e., a training set containing 238,766 question pairs, a development set with 8,802 question pairs, and a test set with 12,500 question pairs, and test several well-known sentence matching methods on it. The experimental results not only demonstrate the good quality of LCQMC but also provide solid baseline performance for further researches on this corpus.

pdf
The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification
Jing Chen | Qingcai Chen | Xin Liu | Haijun Yang | Daohe Lu | Buzhou Tang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper introduces the Bank Question (BQ) corpus, a Chinese corpus for sentence semantic equivalence identification (SSEI). The BQ corpus contains 120,000 question pairs from 1-year online bank custom service logs. To efficiently process and annotate questions from such a large scale of logs, this paper proposes a clustering based annotation method to achieve questions with the same intent. First, the deduplicated questions with the same answer are clustered into stacks by the Word Mover’s Distance (WMD) based Affinity Propagation (AP) algorithm. Then, the annotators are asked to assign the clustered questions into different intent categories. Finally, the positive and negative question pairs for SSEI are selected in the same intent category and between different intent categories respectively. We also present six SSEI benchmark performance on our corpus, including state-of-the-art algorithms. As the largest manually annotated public Chinese SSEI corpus in the bank domain, the BQ corpus is not only useful for Chinese question semantic matching research, but also a significant resource for cross-lingual and cross-domain SSEI research. The corpus is available in public.

1999

pdf
Experiments in translingual information retrieval using web-based MT and WordNet
Krzysztof Czuba | Xin Liu
Proceedings of the 8th Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages