Xin Cong


Enhancing Chinese Pre-trained Language Model via Heterogeneous Linguistics Graph
Yanzeng Li | Jiangxia Cao | Xin Cong | Zhenyu Zhang | Bowen Yu | Hongsong Zhu | Tingwen Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chinese pre-trained language models usually exploit contextual character information to learn representations, while ignoring the linguistics knowledge, e.g., word and sentence information. Hence, we propose a task-free enhancement module termed as Heterogeneous Linguistics Graph (HLG) to enhance Chinese pre-trained language models by integrating linguistics knowledge. Specifically, we construct a hierarchical heterogeneous graph to model the characteristics linguistics structure of Chinese language, and conduct a graph-based method to summarize and concretize information on different granularities of Chinese linguistics hierarchies.Experimental results demonstrate our model has the ability to improve the performance of vanilla BERT, BERTwwm and ERNIE 1.0 on 6 natural language processing tasks with 10 benchmark datasets. Further, the detailed experimental analyses have proven that this kind of modelization achieves more improvements compared with previous strong baseline MWA. Meanwhile, our model introduces far fewer parameters (about half of MWA) and the training/inference speed is about 7x faster than MWA.

Event Causality Extraction with Event Argument Correlations
Shiyao Cui | Jiawei Sheng | Xin Cong | Quangang Li | Tingwen Liu | Jinqiao Shi
Proceedings of the 29th International Conference on Computational Linguistics

Event Causality Identification (ECI), which aims to detect whether a causality relation exists between two given textual events, is an important task for event causality understanding. However, the ECI task ignores crucial event structure and cause-effect causality component information, making it struggle for downstream applications. In this paper, we introduce a novel task, namely Event Causality Extraction (ECE), aiming to extract the cause-effect event causality pairs with their structured event information from plain texts. The ECE task is more challenging since each event can contain multiple event arguments, posing fine-grained correlations between events to decide the cause-effect event pair. Hence, we propose a method with a dual grid tagging scheme to capture the intra- and inter-event argument correlations for ECE. Further, we devise a event type-enhanced model architecture to realize the dual grid tagging scheme. Experiments demonstrate the effectiveness of our method, and extensive analyses point out several future directions for ECE.


Enhanced Language Representation with Label Knowledge for Span Extraction
Pan Yang | Xin Cong | Zhenyu Sun | Xingwu Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Span extraction, aiming to extract text spans (such as words or phrases) from plain text, is a fundamental process in Information Extraction. Recent works introduce the label knowledge to enhance the text representation by formalizing the span extraction task into a question answering problem (QA Formalization), which achieves state-of-the-art performance. However, such a QA Formalization does not fully exploit the label knowledge and causes a dramatic decrease in efficiency of training/inference. To address those problems, we introduce a fresh paradigm to integrate label knowledge and further propose a novel model to explicitly and efficiently integrate label knowledge into text representations. Specifically, it encodes texts and label annotations independently and then integrates label knowledge into text representation with an elaborate-designed semantics fusion module. We conduct extensive experiments on three typical span extraction tasks: flat NER, nested NER, and event detection. The empirical results show that 1) our model achieves a new state-of-the-art performance on four benchmarks, and 2) reduces training time and inference time by 76% and 77% on average, respectively, compared with the QA Formalization paradigm.

Few-Shot Event Detection with Prototypical Amortized Conditional Random Field
Xin Cong | Shiyao Cui | Bowen Yu | Tingwen Liu | Wang Yubin | Bin Wang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021