Xiaoyu Xing


2021

pdf
TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing
Xiao Wang | Qin Liu | Tao Gui | Qi Zhang | Yicheng Zou | Xin Zhou | Jiacheng Ye | Yongxin Zhang | Rui Zheng | Zexiong Pang | Qinzhuo Wu | Zhengyan Li | Chong Zhang | Ruotian Ma | Zichu Fei | Ruijian Cai | Jun Zhao | Xingwu Hu | Zhiheng Yan | Yiding Tan | Yuan Hu | Qiyuan Bian | Zhihua Liu | Shan Qin | Bolin Zhu | Xiaoyu Xing | Jinlan Fu | Yue Zhang | Minlong Peng | Xiaoqing Zheng | Yaqian Zhou | Zhongyu Wei | Xipeng Qiu | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.

2020

pdf
Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis
Xiaoyu Xing | Zhijing Jin | Di Jin | Bingning Wang | Qi Zhang | Xuanjing Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-target aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspect’s sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%. We explore several ways to improve aspect robustness, and find that adversarial training can improve models’ performance on ARTS by up to 32.85%. Our code and new test set are available at https://github.com/zhijing-jin/ARTS_TestSet

2019

pdf
Distantly Supervised Named Entity Recognition using Positive-Unlabeled Learning
Minlong Peng | Xiaoyu Xing | Qi Zhang | Jinlan Fu | Xuanjing Huang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this work, we explore the way to perform named entity recognition (NER) using only unlabeled data and named entity dictionaries. To this end, we formulate the task as a positive-unlabeled (PU) learning problem and accordingly propose a novel PU learning algorithm to perform the task. We prove that the proposed algorithm can unbiasedly and consistently estimate the task loss as if there is fully labeled data. A key feature of the proposed method is that it does not require the dictionaries to label every entity within a sentence, and it even does not require the dictionaries to label all of the words constituting an entity. This greatly reduces the requirement on the quality of the dictionaries and makes our method generalize well with quite simple dictionaries. Empirical studies on four public NER datasets demonstrate the effectiveness of our proposed method. We have published the source code at https://github.com/v-mipeng/LexiconNER.