We consider the problem of pretraining a two-stage open-domain question answering (QA) system (retriever + reader) with strong transfer capabilities. The key challenge is how to construct a large amount of high-quality question-answer-context triplets without task-specific annotations. Specifically, the triplets should align well with downstream tasks by: (i) covering a wide range of domains (for open-domain applications), (ii) linking a question to its semantically relevant context with supporting evidence (for training the retriever), and (iii) identifying the correct answer in the context (for training the reader). Previous pretraining approaches generally fall short of one or more of these requirements. In this work, we automatically construct a large-scale corpus that meets all three criteria by consulting millions of references cited within Wikipedia. The well-aligned pretraining signals benefit both the retriever and the reader significantly. Our pretrained retriever leads to 2%-10% absolute gains in top-20 accuracy. And with our pretrained reader, the entire system improves by up to 4% in exact match.
Word Sense Disambiguation (WSD) aims to automatically identify the exact meaning of one word according to its context. Existing supervised models struggle to make correct predictions on rare word senses due to limited training data and can only select the best definition sentence from one predefined word sense inventory (e.g., WordNet). To address the data sparsity problem and generalize the model to be independent of one predefined inventory, we propose a gloss alignment algorithm that can align definition sentences (glosses) with the same meaning from different sense inventories to collect rich lexical knowledge. We then train a model to identify semantic equivalence between a target word in context and one of its glosses using these aligned inventories, which exhibits strong transfer capability to many WSD tasks. Experiments on benchmark datasets show that the proposed method improves predictions on both frequent and rare word senses, outperforming prior work by 1.2% on the All-Words WSD Task and 4.3% on the Low-Shot WSD Task. Evaluation on WiC Task also indicates that our method can better capture word meanings in context.
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.
We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology. Our system, GAIA, enables seamless search of complex graph queries, and retrieves multimedia evidence including text, images and videos. GAIA achieves top performance at the recent NIST TAC SM-KBP2019 evaluation. The system is publicly available at GitHub and DockerHub, with a narrated video that documents the system.
We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus. In this work, we explore simple yet effective methods for exploiting two sources of external knowledge for subject-area QA. The first enriches the original subject-area reference corpus with relevant text snippets extracted from an open-domain resource (i.e., Wikipedia) that cover potentially ambiguous concepts in the question and answer options. As in other QA research, the second method simply increases the amount of training data by appending additional in-domain subject-area instances. Experiments on three challenging multiple-choice science QA tasks (i.e., ARC-Easy, ARC-Challenge, and OpenBookQA) demonstrate the effectiveness of our methods: in comparison to the previous state-of-the-art, we obtain absolute gains in accuracy of up to 8.1%, 13.0%, and 12.8%, respectively. While we observe consistent gains when we introduce knowledge from Wikipedia, we find that employing additional QA training instances is not uniformly helpful: performance degrades when the added instances exhibit a higher level of difficulty than the original training data. As one of the first studies on exploiting unstructured external knowledge for subject-area QA, we hope our methods, observations, and discussion of the exposed limitations may shed light on further developments in the area.
Entities, which refer to distinct objects in the real world, can be viewed as language universals and used as effective signals to generate less ambiguous semantic representations and align multiple languages. We propose a novel method, CLEW, to generate cross-lingual data that is a mix of entities and contextual words based on Wikipedia. We replace each anchor link in the source language with its corresponding entity title in the target language if it exists, or in the source language otherwise. A cross-lingual joint entity and word embedding learned from this kind of data not only can disambiguate linkable entities but can also effectively represent unlinkable entities. Because this multilingual common space directly relates the semantics of contextual words in the source language to that of entities in the target language, we leverage it for unsupervised cross-lingual entity linking. Experimental results show that CLEW significantly advances the state-of-the-art: up to 3.1% absolute F-score gain for unsupervised cross-lingual entity linking. Moreover, it provides reliable alignment on both the word/entity level and the sentence level, and thus we use it to mine parallel sentences for all (302, 2) language pairs in Wikipedia.
We demonstrate ELISA-EDL, a state-of-the-art re-trainable system to extract entity mentions from low-resource languages, link them to external English knowledge bases, and visualize locations related to disaster topics on a world heatmap. We make all of our data sets, resources and system training and testing APIs publicly available for research purpose.
We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.
Current supervised name tagging approaches are inadequate for most low-resource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute F-score gains on name tagging without using any human annotation
The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating “silver-standard” annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.
Annotation projection is a practical method to deal with the low resource problem in incident languages (IL) processing. Previous methods on annotation projection mainly relied on word alignment results without any training process, which led to noise propagation caused by word alignment errors. In this paper, we focus on the named entity recognition (NER) task and propose a weakly-supervised framework to project entity annotations from English to IL through bitexts. Instead of directly relying on word alignment results, this framework combines advantages of rule-based methods and deep learning methods by implementing two steps: First, generates a high-confidence entity annotation set on IL side with strict searching methods; Second, uses this high-confidence set to weakly supervise the model training. The model is finally used to accomplish the projecting process. Experimental results on two low-resource ILs show that the proposed method can generate better annotations projected from English-IL parallel corpora. The performance of IL name tagger can also be improved significantly by training on the newly projected IL annotation set.