Xiaochen Wang
2022
Sentence-Level Resampling for Named Entity Recognition
Xiaochen Wang
|
Yue Wang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
As a fundamental task in natural language processing, named entity recognition (NER) aims to locate and classify named entities in unstructured text. However, named entities are always the minority among all tokens in the text. This data imbalance problem presents a challenge to machine learning models as their learning objective is usually dominated by the majority of non-entity tokens. To alleviate data imbalance, we propose a set of sentence-level resampling methods where the importance of each training sentence is computed based on its tokens and entities. We study the generalizability of these resampling methods on a wide variety of NER models (CRF, Bi-LSTM, and BERT) across corpora from diverse domains (general, social, and medical texts). Extensive experiments show that the proposed methods improve span-level macro F1-scores of the evaluated NER models on multiple corpora, frequently outperforming sub-sentence-level resampling, data augmentation, and special loss functions such as focal and Dice loss.
2017
Course Concept Extraction in MOOCs via Embedding-Based Graph Propagation
Liangming Pan
|
Xiaochen Wang
|
Chengjiang Li
|
Juanzi Li
|
Jie Tang
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Massive Open Online Courses (MOOCs), offering a new way to study online, are revolutionizing education. One challenging issue in MOOCs is how to design effective and fine-grained course concepts such that students with different backgrounds can grasp the essence of the course. In this paper, we conduct a systematic investigation of the problem of course concept extraction for MOOCs. We propose to learn latent representations for candidate concepts via an embedding-based method. Moreover, we develop a graph-based propagation algorithm to rank the candidate concepts based on the learned representations. We evaluate the proposed method using different courses from XuetangX and Coursera. Experimental results show that our method significantly outperforms all the alternative methods (+0.013-0.318 in terms of R-precision; p<<0.01, t-test).
Search