An extractive rationale explains a language model’s (LM’s) prediction on a given task instance by highlighting the text inputs that most influenced the prediction. Ideally, rationale extraction should be faithful (reflective of LM’s actual behavior) and plausible (convincing to humans), without compromising the LM’s (i.e., task model’s) task performance. Although attribution algorithms and select-predict pipelines are commonly used in rationale extraction, they both rely on certain heuristics that hinder them from satisfying all three desiderata. In light of this, we propose UNIREX, a flexible learning framework which generalizes rationale extractor optimization as follows: (1) specify architecture for a learned rationale extractor; (2) select explainability objectives (i.e., faithfulness and plausibility criteria); and (3) jointly the train task model and rationale extractor on the task using selected objectives. UNIREX enables replacing prior works’ heuristic design choices with a generic learned rationale extractor in (1) and optimizing it for all three desiderata in (2)-(3). To facilitate comparison between methods w.r.t. multiple desiderata, we introduce the Normalized Relative Gain (NRG) metric. Across five English text classification datasets, our best UNIREX configuration outperforms the strongest baselines by an average of 32.9% NRG. Plus, we find that UNIREX-trained rationale extractors’ faithfulness can even generalize to unseen datasets and tasks.
Interactions among users on social network platforms are usually positive, constructive and insightful. However, sometimes people also get exposed to objectionable content such as hate speech, bullying, and verbal abuse etc. Most social platforms have explicit policy against hate speech because it creates an environment of intimidation and exclusion, and in some cases may promote real-world violence. As users’ interactions on today’s social networks involve multiple modalities, such as texts, images and videos, in this paper we explore the challenge of automatically identifying hate speech with deep multimodal technologies, extending previous research which mostly focuses on the text signal alone. We present a number of fusion approaches to integrate text and photo signals. We show that augmenting text with image embedding information immediately leads to a boost in performance, while applying additional attention fusion methods brings further improvement.
Machine learning, including neural network techniques, have been applied to virtually every domain in natural language processing. One problem that has been somewhat resistant to effective machine learning solutions is text normalization for speech applications such as text-to-speech synthesis (TTS). In this application, one must decide, for example, that 123 is verbalized as one hundred twenty three in 123 pages but as one twenty three in 123 King Ave. For this task, state-of-the-art industrial systems depend heavily on hand-written language-specific grammars.We propose neural network models that treat text normalization for TTS as a sequence-to-sequence problem, in which the input is a text token in context, and the output is the verbalization of that token. We find that the most effective model, in accuracy and efficiency, is one where the sentential context is computed once and the results of that computation are combined with the computation of each token in sequence to compute the verbalization. This model allows for a great deal of flexibility in terms of representing the context, and also allows us to integrate tagging and segmentation into the process.These models perform very well overall, but occasionally they will predict wildly inappropriate verbalizations, such as reading 3 cm as three kilometers. Although rare, such verbalizations are a major issue for TTS applications. We thus use finite-state covering grammars to guide the neural models, either during training and decoding, or just during decoding, away from such “unrecoverable” errors. Such grammars can largely be learned from data.
We present algorithms for extracting Hyperedge Replacement Grammar (HRG) rules from a graph along with a vertex order. Our algorithms are based on finding a tree decomposition of smallest width, relative to the vertex order, and then extracting one rule for each node in this structure. The assumption of a fixed order for the vertices of the input graph makes it possible to solve the problem in polynomial time, in contrast to the fact that the problem of finding optimal tree decompositions for a graph is NP-hard. We also present polynomial-time algorithms for parsing based on our HRGs, where the input is a vertex sequence and the output is a graph structure. The intended application of our algorithms is grammar extraction and parsing for semantic representation of natural language. We apply our algorithms to data annotated with Abstract Meaning Representations and report on the characteristics of the resulting grammars.
Motivated by the task of semantic parsing, we describe a transition system that generalizes standard transition-based dependency parsing techniques to generate a graph rather than a tree. Our system includes a cache with fixed size m, and we characterize the relationship between the parameter m and the class of graphs that can be produced through the graph-theoretic concept of tree decomposition. We find empirically that small cache sizes cover a high percentage of sentences in existing semantic corpora.
In this paper, we present a sequence-to-sequence based approach for mapping natural language sentences to AMR semantic graphs. We transform the sequence to graph mapping problem to a word sequence to transition action sequence problem using a special transition system called a cache transition system. To address the sparsity issue of neural AMR parsing, we feed feature embeddings from the transition state to provide relevant local information for each decoder state. We present a monotonic hard attention model for the transition framework to handle the strictly left-to-right alignment between each transition state and the current buffer input focus. We evaluate our neural transition model on the AMR parsing task, and our parser outperforms other sequence-to-sequence approaches and achieves competitive results in comparison with the best-performing models.
This paper addresses the task of AMR-to-text generation by leveraging synchronous node replacement grammar. During training, graph-to-string rules are learned using a heuristic extraction algorithm. At test time, a graph transducer is applied to collapse input AMRs and generate output sentences. Evaluated on a standard benchmark, our method gives the state-of-the-art result.
Neural attention models have achieved great success in different NLP tasks. However, they have not fulfilled their promise on the AMR parsing task due to the data sparsity issue. In this paper, we describe a sequence-to-sequence model for AMR parsing and present different ways to tackle the data sparsity problem. We show that our methods achieve significant improvement over a baseline neural attention model and our results are also competitive against state-of-the-art systems that do not use extra linguistic resources.