Xiao Liu


Dual-Channel Evidence Fusion for Fact Verification over Texts and Tables
Nan Hu | Zirui Wu | Yuxuan Lai | Xiao Liu | Yansong Feng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Different from previous fact extraction and verification tasks that only consider evidence of a single format, FEVEROUS brings further challenges by extending the evidence format to both plain text and tables. Existing works convert all candidate evidence into either sentences or tables, thus often failing to fully capture the rich context in their original format from the converted evidence, let alone the context information lost during conversion. In this paper, we propose a Dual Channel Unified Format fact verification model (DCUF), which unifies various evidence into parallel streams, i.e., natural language sentences and a global evidence table, simultaneously. With carefully-designed evidence conversion and organization methods, DCUF makes the most of pre-trained table/language models to encourage each evidence piece to perform early and thorough interactions with other pieces in its original format. Experiments show that our model can make better use of existing pre-trained models to absorb evidence of two formats, thus outperforming previous works by a large margin. Our code and models are publicly available.

GLM: General Language Model Pretraining with Autoregressive Blank Infilling
Zhengxiao Du | Yujie Qian | Xiao Liu | Ming Ding | Jiezhong Qiu | Zhilin Yang | Jie Tang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

There have been various types of pretraining architectures including autoencoding models (e.g., BERT), autoregressive models (e.g., GPT), and encoder-decoder models (e.g., T5). However, none of the pretraining frameworks performs the best for all tasks of three main categories including natural language understanding (NLU), unconditional generation, and conditional generation. We propose a General Language Model (GLM) based on autoregressive blank infilling to address this challenge. GLM improves blank filling pretraining by adding 2D positional encodings and allowing an arbitrary order to predict spans, which results in performance gains over BERT and T5 on NLU tasks. Meanwhile, GLM can be pretrained for different types of tasks by varying the number and lengths of blanks. On a wide range of tasks across NLU, conditional and unconditional generation, GLM outperforms BERT, T5, and GPT given the same model sizes and data, and achieves the best performance from a single pretrained model with 1.25× parameters of BERT Large , demonstrating its generalizability to different downstream tasks.

Things not Written in Text: Exploring Spatial Commonsense from Visual Signals
Xiao Liu | Da Yin | Yansong Feng | Dongyan Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Spatial commonsense, the knowledge about spatial position and relationship between objects (like the relative size of a lion and a girl, and the position of a boy relative to a bicycle when cycling), is an important part of commonsense knowledge. Although pretrained language models (PLMs) succeed in many NLP tasks, they are shown to be ineffective in spatial commonsense reasoning. Starting from the observation that images are more likely to exhibit spatial commonsense than texts, we explore whether models with visual signals learn more spatial commonsense than text-based PLMs. We propose a spatial commonsense benchmark that focuses on the relative scales of objects, and the positional relationship between people and objects under different actions.We probe PLMs and models with visual signals, including vision-language pretrained models and image synthesis models, on this benchmark, and find that image synthesis models are more capable of learning accurate and consistent spatial knowledge than other models. The spatial knowledge from image synthesis models also helps in natural language understanding tasks that require spatial commonsense.

Dynamic Prefix-Tuning for Generative Template-based Event Extraction
Xiao Liu | Heyan Huang | Ge Shi | Bo Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We consider event extraction in a generative manner with template-based conditional generation.Although there is a rising trend of casting the task of event extraction as a sequence generation problem with prompts, these generation-based methods have two significant challenges, including using suboptimal prompts and static event type information.In this paper, we propose a generative template-based event extraction method with dynamic prefix (GTEE-DynPref) by integrating context information with type-specific prefixes to learn a context-specific prefix for each context.Experimental results show that our model achieves competitive results with the state-of-the-art classification-based model OneIE on ACE 2005 and achieves the best performances on ERE.Additionally, our model is proven to be portable to new types of events effectively.

P-Tuning: Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks
Xiao Liu | Kaixuan Ji | Yicheng Fu | Weng Tam | Zhengxiao Du | Zhilin Yang | Jie Tang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training. However, in the context of NLU, prior work reveals that prompt tuning does not perform well for normal-sized pretrained models. We also find that existing methods of prompt tuning cannot handle hard sequence labeling tasks, indicating a lack of universality. We present a novel empirical finding that properly optimized prompt tuning can be universally effective across a wide range of model scales and NLU tasks. It matches the performance of finetuning while having only 0.1%-3% tuned parameters. Our method P-Tuning v2 is an implementation of Deep Prompt Tuning (CITATION) optimized and adapted for NLU. Given the universality and simplicity of P-Tuning v2, we believe it can serve as an alternative to finetuning and a strong baseline for future research.

DeepStruct: Pretraining of Language Models for Structure Prediction
Chenguang Wang | Xiao Liu | Zui Chen | Haoyun Hong | Jie Tang | Dawn Song
Findings of the Association for Computational Linguistics: ACL 2022

We introduce a method for improving the structural understanding abilities of language models. Unlike previous approaches that finetune the models with task-specific augmentation, we pretrain language models to generate structures from the text on a collection of task-agnostic corpora. Our structure pretraining enables zero-shot transfer of the learned knowledge that models have about the structure tasks. We study the performance of this approach on 28 datasets, spanning 10 structure prediction tasks including open information extraction, joint entity and relation extraction, named entity recognition, relation classification, semantic role labeling, event extraction, coreference resolution, factual probe, intent detection, and dialogue state tracking. We further enhance the pretraining with the task-specific training sets. We show that a 10B parameter language model transfers non-trivially to most tasks and obtains state-of-the-art performance on 21 of 28 datasets that we evaluate. Our code and datasets will be made publicly available.

Counterfactual Recipe Generation: Exploring Compositional Generalization in a Realistic Scenario
Xiao Liu | Yansong Feng | Jizhi Tang | Chengang Hu | Dongyan Zhao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

People can acquire knowledge in an unsupervised manner by reading, and compose the knowledge to make novel combinations. In this paper, we investigate whether pretrained language models can perform compositional generalization in a realistic setting: recipe generation. We design the counterfactual recipe generation task, which asks models to modify a base recipe according to the change of an ingredient. This task requires compositional generalization at two levels: the surface level of incorporating the new ingredient into the base recipe, and the deeper level of adjusting actions related to the changing ingredient. We collect a large-scale recipe dataset in Chinese for models to learn culinary knowledge, and a subset of action-level fine-grained annotations for evaluation.We finetune pretrained language models on the recipe corpus, and use unsupervised counterfactual generation methods to generate modified recipes.Results show that existing models have difficulties in modifying the ingredients while preserving the original text style, and often miss actions that need to be adjusted. Although pretrained language models can generate fluent recipe texts, they fail to truly learn and use the culinary knowledge in a compositional way. Code and data are available at https://github.com/xxxiaol/counterfactual-recipe-generation.

IELM: An Open Information Extraction Benchmark for Pre-Trained Language Models
Chenguang Wang | Xiao Liu | Dawn Song
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We introduce a new open information extraction (OIE) benchmark for pre-trained language models (LM). Recent studies have demonstrated that pre-trained LMs, such as BERT and GPT, may store linguistic and relational knowledge. In particular, LMs are able to answer “fill-in-the-blank” questions when given a pre-defined relation category. Instead of focusing on pre-defined relations, we create an OIE benchmark aiming to fully examine the open relational information present in the pre-trained LMs. We accomplish this by turning pre-trained LMs into zero-shot OIE systems. Surprisingly, pre-trained LMs are able to obtain competitive performance on both standard OIE datasets (CaRB and Re-OIE2016) and two new large-scale factual OIE datasets (TAC KBP-OIE and Wikidata-OIE) that we establish via distant supervision. For instance, the zero-shot pre-trained LMs outperform the F1 score of the state-of-the-art supervised OIE methods on our factual OIE datasets without needing to use any training sets.

HEGEL: Hypergraph Transformer for Long Document Summarization
Haopeng Zhang | Xiao Liu | Jiawei Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Extractive summarization for long documents is challenging due to the extended structured input context. The long-distance sentence dependency hinders cross-sentence relations modeling, the critical step of extractive summarization. This paper proposes HEGEL, a hypergraph neural network for long document summarization by capturing high-order cross-sentence relations. HEGEL updates and learns effective sentence representations with hypergraph transformer layers and fuses different types of sentence dependencies, including latent topics, keywords coreference, and section structure. We validate HEGEL by conducting extensive experiments on two benchmark datasets, and experimental results demonstrate the effectiveness and efficiency of HEGEL.

SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval
Kun Zhou | Yeyun Gong | Xiao Liu | Wayne Xin Zhao | Yelong Shen | Anlei Dong | Jingwen Lu | Rangan Majumder | Ji-rong Wen | Nan Duan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Sampling proper negatives from a large document pool is vital to effectively train a dense retrieval model.However, existing negative sampling strategies suffer from the uninformative or false negative problem.In this work, we empirically show that according to the measured relevance scores, the negatives ranked around the positives are generally more informative and less likely to be false negatives.Intuitively, these negatives are not too hard ({emph{may be false negatives}) or too easy ({emph{uninformative}). They are the ambiguous negatives and need more attention during training.Thus, we propose a simple ambiguous negatives sampling method, SimANS, which incorporates a new sampling probability distribution to sample more ambiguous negatives.Extensive experiments on four public and one industry datasets show the effectiveness of our approach.We made the code and models publicly available in {url{https://github.com/microsoft/SimXNS}.


Using Noisy Self-Reports to Predict Twitter User Demographics
Zach Wood-Doughty | Paiheng Xu | Xiao Liu | Mark Dredze
Proceedings of the Ninth International Workshop on Natural Language Processing for Social Media

Computational social science studies often contextualize content analysis within standard demographics. Since demographics are unavailable on many social media platforms (e.g. Twitter), numerous studies have inferred demographics automatically. Despite many studies presenting proof-of-concept inference of race and ethnicity, training of practical systems remains elusive since there are few annotated datasets. Existing datasets are small, inaccurate, or fail to cover the four most common racial and ethnic groups in the United States. We present a method to identify self-reports of race and ethnicity from Twitter profile descriptions. Despite the noise of automated supervision, our self-report datasets enable improvements in classification performance on gold standard self-report survey data. The result is a reproducible method for creating large-scale training resources for race and ethnicity.

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation
Chenguang Wang | Xiao Liu | Zui Chen | Haoyun Hong | Jie Tang | Dawn Song
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We cast a suite of information extraction tasks into a text-to-triple translation framework. Instead of solving each task relying on task-specific datasets and models, we formalize the task as a translation between task-specific input text and output triples. By taking the task-specific input, we enable a task-agnostic translation by leveraging the latent knowledge that a pre-trained language model has about the task. We further demonstrate that a simple pre-training task of predicting which relational information corresponds to which input text is an effective way to produce task-specific outputs. This enables the zero-shot transfer of our framework to downstream tasks. We study the zero-shot performance of this framework on open information extraction (OIE2016, NYT, WEB, PENN), relation classification (FewRel and TACRED), and factual probe (Google-RE and T-REx). The model transfers non-trivially to most tasks and is often competitive with a fully supervised method without the need for any task-specific training. For instance, we significantly outperform the F1 score of the supervised open information extraction without needing to use its training set.

Geo-BERT Pre-training Model for Query Rewriting in POI Search
Xiao Liu | Juan Hu | Qi Shen | Huan Chen
Findings of the Association for Computational Linguistics: EMNLP 2021

Query Rewriting (QR) is proposed to solve the problem of the word mismatch between queries and documents in Web search. Existing approaches usually model QR with an end-to-end sequence-to-sequence (seq2seq) model. The state-of-the-art Transformer-based models can effectively learn textual semantics from user session logs, but they often ignore users’ geographic location information that is crucial for the Point-of-Interest (POI) search of map services. In this paper, we proposed a pre-training model, called Geo-BERT, to integrate semantics and geographic information in the pre-trained representations of POIs. Firstly, we simulate POI distribution in the real world as a graph, in which nodes represent POIs and multiple geographic granularities. Then we use graph representation learning methods to get geographic representations. Finally, we train a BERT-like pre-training model with text and POIs’ graph embeddings to get an integrated representation of both geographic and semantic information, and apply it in the QR of POI search. The proposed model achieves excellent accuracy on a wide range of real-world datasets of map services.

Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis
Xiao Liu | Da Yin | Yansong Feng | Yuting Wu | Dongyan Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examined, but is of great importance, especially in the legal domain. In this paper, we propose a novel Graph-based Causal Inference (GCI) framework, which builds causal graphs from fact descriptions without much human involvement and enables causal inference to facilitate legal practitioners to make proper decisions. We evaluate the framework on a challenging similar charge disambiguation task. Experimental results show that GCI can capture the nuance from fact descriptions among multiple confusing charges and provide explainable discrimination, especially in few-shot settings. We also observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.

pdf bib
SeqDialN: Sequential Visual Dialog Network in Joint Visual-Linguistic Representation Space
Liu Yang | Fanqi Meng | Xiao Liu | Ming-Kuang Daniel Wu | Vicent Ying | James Xu
Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering (DialDoc 2021)

The key challenge of the visual dialog task is how to fuse features from multimodal sources and extract relevant information from dialog history to answer the current query. In this work, we formulate a visual dialog as an information flow in which each piece of information is encoded with the joint visual-linguistic representation of a single dialog round. Based on this formulation, we consider the visual dialog task as a sequence problem consisting of ordered visual-linguistic vectors.For featurization, we use a Dense SymmetricCo-Attention network (Nguyen and Okatani,2018) as a lightweight vison-language joint representation generator to fuse multimodal features (i.e., image and text), yielding better computation and data efficiencies. For inference, we propose two Sequential Dialog Networks (SeqDialN): the first uses LSTM(Hochreiter and Schmidhuber,1997) for information propagation (IP) and the second uses a modified Transformer (Vaswani et al.,2017) for multi-step reasoning (MR). Our architecture separates the complexity of multimodal feature fusion from that of inference, which allows simpler design of the inference engine. On VisDial v1.0 test-std dataset, our best single generative SeqDialN achieves 62.54% NDCG and 48.63% MRR; our ensemble generative SeqDialN achieves 63.78% NDCG and 49.98% MRR, which set a new state-of-the-art generative visual dialog model. We fine-tune discriminative SeqDialN with dense annotations and boost the performance up to 72.41% NDCG and 55.11% MRR. In this work, we discuss the extensive experiments we have conducted to demonstrate the effectiveness of our model components. We also provide visualization for the reasoning process from the relevant conversation rounds and discuss our fine-tuning methods. The code is available at https://github.com/xiaoxiaoheimei/SeqDialN.


Neighborhood Matching Network for Entity Alignment
Yuting Wu | Xiao Liu | Yansong Feng | Zheng Wang | Dongyan Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.


pdf bib
A Soft Label Strategy for Target-Level Sentiment Classification
Da Yin | Xiao Liu | Xiuyu Wu | Baobao Chang
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper, we propose a soft label approach to target-level sentiment classification task, in which a history-based soft labeling model is proposed to measure the possibility of a context word as an opinion word. We also apply a convolution layer to extract local active features, and introduce positional weights to take relative distance information into consideration. In addition, we obtain more informative target representation by training with context tokens together to make deeper interaction between target and context tokens. We conduct experiments on SemEval 2014 datasets and the experimental results show that our approach significantly outperforms previous models and gives state-of-the-art results on these datasets.

Open Domain Event Extraction Using Neural Latent Variable Models
Xiao Liu | Heyan Huang | Yue Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We consider open domain event extraction, the task of extracting unconstraint types of events from news clusters. A novel latent variable neural model is constructed, which is scalable to very large corpus. A dataset is collected and manually annotated, with task-specific evaluation metrics being designed. Results show that the proposed unsupervised model gives better performance compared to the state-of-the-art method for event schema induction.

Jointly Learning Entity and Relation Representations for Entity Alignment
Yuting Wu | Xiao Liu | Yansong Feng | Zheng Wang | Dongyan Zhao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.


Real-time Scholarly Retweeting Prediction System
Zhunchen Luo | Xiao Liu
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

Twitter has become one of the most import channels to spread latest scholarly information because of its fast information spread speed. How to predict whether a scholarly tweet will be retweeted is a key task in understanding the message propagation within large user communities. Hence, we present the real-time scholarly retweeting prediction system that retrieves scholarly tweets which will be retweeted. First, we filter scholarly tweets from tracking a tweet stream. Then, we extract Tweet Scholar Blocks indicating metadata of papers. At last, we combine scholarly features with the Tweet Scholar Blocks to predict whether a scholarly tweet will be retweeted. Our system outperforms chosen baseline systems. Additionally, our system has the potential to predict scientific impact in real-time.

Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation
Xiao Liu | Zhunchen Luo | Heyan Huang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Event extraction is of practical utility in natural language processing. In the real world, it is a common phenomenon that multiple events existing in the same sentence, where extracting them are more difficult than extracting a single event. Previous works on modeling the associations between events by sequential modeling methods suffer a lot from the low efficiency in capturing very long-range dependencies. In this paper, we propose a novel Jointly Multiple Events Extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information. The experiment results demonstrate that our proposed framework achieves competitive results compared with state-of-the-art methods.


Fast Recursive Multi-class Classification of Pairs of Text Entities for Biomedical Event Extraction
Xiao Liu | Antoine Bordes | Yves Grandvalet
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics


Biomedical Event Extraction by Multi-class Classification of Pairs of Text Entities
Xiao Liu | Antoine Bordes | Yves Grandvalet
Proceedings of the BioNLP Shared Task 2013 Workshop