Xia Cui


2020

pdf
Multi-Source Attention for Unsupervised Domain Adaptation
Xia Cui | Danushka Bollegala
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

We model source-selection in multi-source Unsupervised Domain Adaptation (UDA) as an attention-learning problem, where we learn attention over the sources per given target instance. We first independently learn source-specific classification models, and a relatedness map between sources and target domains using pseudo-labelled target domain instances. Next, we learn domain-attention scores over the sources for aggregating the predictions of the source-specific models. Experimental results on two cross-domain sentiment classification datasets show that the proposed method reports consistently good performance across domains, and at times outperforming more complex prior proposals. Moreover, the computed domain-attention scores enable us to find explanations for the predictions made by the proposed method.

2019

pdf
Self-Adaptation for Unsupervised Domain Adaptation
Xia Cui | Danushka Bollegala
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

Lack of labelled data in the target domain for training is a common problem in domain adaptation. To overcome this problem, we propose a novel unsupervised domain adaptation method that combines projection and self-training based approaches. Using the labelled data from the source domain, we first learn a projection that maximises the distance among the nearest neighbours with opposite labels in the source domain. Next, we project the source domain labelled data using the learnt projection and train a classifier for the target class prediction. We then use the trained classifier to predict pseudo labels for the target domain unlabelled data. Finally, we learn a projection for the target domain as we did for the source domain using the pseudo-labelled target domain data, where we maximise the distance between nearest neighbours having opposite pseudo labels. Experiments on a standard benchmark dataset for domain adaptation show that the proposed method consistently outperforms numerous baselines and returns competitive results comparable to that of SOTA including self-training, tri-training, and neural adaptations.

2018

pdf
Solving Feature Sparseness in Text Classification using Core-Periphery Decomposition
Xia Cui | Sadamori Kojaku | Naoki Masuda | Danushka Bollegala
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

Feature sparseness is a problem common to cross-domain and short-text classification tasks. To overcome this feature sparseness problem, we propose a novel method based on graph decomposition to find candidate features for expanding feature vectors. Specifically, we first create a feature-relatedness graph, which is subsequently decomposed into core-periphery (CP) pairs and use the peripheries as the expansion candidates of the cores. We expand both training and test instances using the computed related features and use them to train a text classifier. We observe that prioritising features that are common to both training and test instances as cores during the CP decomposition to further improve the accuracy of text classification. We evaluate the proposed CP-decomposition-based feature expansion method on benchmark datasets for cross-domain sentiment classification and short-text classification. Our experimental results show that the proposed method consistently outperforms all baselines on short-text classification tasks, and perform competitively with pivot-based cross-domain sentiment classification methods.