Temporal language grounding in videos aims to localize the temporal span relevant to the given query sentence. Previous methods treat it either as a boundary regression task or a span extraction task. This paper will formulate temporal language grounding into video reading comprehension and propose a Relation-aware Network (RaNet) to address it. This framework aims to select a video moment choice from the predefined answer set with the aid of coarse-and-fine choice-query interaction and choice-choice relation construction. A choice-query interactor is proposed to match the visual and textual information simultaneously in sentence-moment and token-moment levels, leading to a coarse-and-fine cross-modal interaction. Moreover, a novel multi-choice relation constructor is introduced by leveraging graph convolution to capture the dependencies among video moment choices for the best choice selection. Extensive experiments on ActivityNet-Captions, TACoS, and Charades-STA demonstrate the effectiveness of our solution. Codes will be available at https://github.com/Huntersxsx/RaNet.
To enrich vocabulary of low resource settings, we proposed a novel method which identify loanwords in monolingual corpora. More specifically, we first use cross-lingual word embeddings as the core feature to generate semantically related candidates based on comparable corpora and a small bilingual lexicon; then, a log-linear model which combines several shallow features such as pronunciation similarity and hybrid language model features to predict the final results. In this paper, we use Uyghur as the receipt language and try to detect loanwords in four donor languages: Arabic, Chinese, Persian and Russian. We conduct two groups of experiments to evaluate the effectiveness of our proposed approach: loanword identification and OOV translation in four language pairs and eight translation directions (Uyghur-Arabic, Arabic-Uyghur, Uyghur-Chinese, Chinese-Uyghur, Uyghur-Persian, Persian-Uyghur, Uyghur-Russian, and Russian-Uyghur). Experimental results on loanword identification show that our method outperforms other baseline models significantly. Neural machine translation models integrating results of loanword identification experiments achieve the best results on OOV translation(with 0.5-0.9 BLEU improvements)
To alleviate data sparsity in spoken Uyghur machine translation, we proposed a log-linear based morphological segmentation approach. Instead of learning model only from monolingual annotated corpus, this approach optimizes Uyghur segmentation for spoken translation based on both bilingual and monolingual corpus. Our approach relies on several features such as traditional conditional random field (CRF) feature, bilingual word alignment feature and monolingual suffixword co-occurrence feature. Experimental results shown that our proposed segmentation model for Uyghur spoken translation achieved 1.6 BLEU score improvements compared with the state-of-the-art baseline.
Existing discourse research only focuses on the monolingual languages and the inconsistency between languages limits the power of the discourse theory in multilingual applications such as machine translation. To address this issue, we design and build a bilingual discource corpus in which we are currently defining and annotating the bilingual elementary discourse units (BEDUs). The BEDUs are then organized into hierarchical structures. Using this discourse style, we have annotated nearly 20K LDC sentences. Finally, we design a bilingual discourse based method for machine translation evaluation and show the effectiveness of our bilingual discourse annotations.