Wolf-Tilo Balke

Also published as: Wolf Tilo Balke


Contextualizing Language Models for Norms Diverging from Social Majority
Niklas Kiehne | Hermann Kroll | Wolf-Tilo Balke
Findings of the Association for Computational Linguistics: EMNLP 2022

To comprehensibly contextualize decisions, artificial systems in social situations need a high degree of awareness of the rules of conduct of human behavior. Especially transformer-based language models have recently been shown to exhibit some such awareness. But what if norms in some social setting do not adhere to or even blatantly deviate from the mainstream? In this paper, we introduce a novel mechanism based on deontic logic to allow for a flexible adaptation of individual norms by de-biasing training data sets and a task-reduction to textual entailment. Building on the popular ‘Moral Stories’ dataset we on the one hand highlight the intrinsic bias of current language models, on the other hand characterize the adaptability of pre-trained models to deviating norms in fine-tuning settings.

Quantifying Bias from Decoding Techniques in Natural Language Generation
Mayukh Das | Wolf Tilo Balke
Proceedings of the 29th International Conference on Computational Linguistics

Natural language generation (NLG) models can propagate social bias towards particular demography. Though several studies investigated bias from data and model, NLG task distinctively uses stochastic decoder that can positively or negatively impact the bias-sensitive tokens initially predicted by the model. To address this gap in research, we present an extensive analysis of bias from decoding techniques for open-domain language generation considering the entire decoding space. We analyze to what extent bias metrics like toxicity and sentiment are impacted by the individual components of decoder algorithms. To this extent, we also analyze the trade-off between bias scores and human-annotated generation quality throughout the decoder space. Together, these methods reveal the imperative of testing inference time bias and provide evidence on the usefulness of inspecting the entire decoding spectrum.