Wenchuan Mu


2022

pdf
Universal Evasion Attacks on Summarization Scoring
Wenchuan Mu | Kwan Hui Lim
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

The automatic scoring of summaries is important as it guides the development of summarizers. Scoring is also complex, as it involves multiple aspects such as the fluency, grammar, and even textual entailment with the source text. However, summary scoring has not been considered as a machine learning task to study its accuracy and robustness. In this study, we place automatic scoring in the context of regression machine learning tasks and perform evasion attacks to explore its robustness. Attack systems predict a non-summary string from each input, and these non-summary strings achieve competitive scores with good summarizers on the most popular metrics: ROUGE, METEOR, and BERTScore. Attack systems also “outperform” state-of-the-art summarization methods on ROUGE-1 and ROUGE-L, and score the second-highest on METEOR. Furthermore, a BERTScore backdoor is observed: a simple trigger can score higher than any automatic summarization method. The evasion attacks in this work indicate the low robustness of current scoring systems at the system level. We hope that our highlighting of these proposed attack will facilitate the development of summary scores.

pdf
Revision for Concision: A Constrained Paraphrase Generation Task
Wenchuan Mu | Kwan Hui Lim
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)

Academic writing should be concise as concise sentences better keep the readers’ attention and convey meaning clearly. Writing concisely is challenging, for writers often struggle to revise their drafts. We introduce and formulate revising for concision as a natural language processing task at the sentence level. Revising for concision requires algorithms to use only necessary words to rewrite a sentence while preserving its meaning. The revised sentence should be evaluated according to its word choice, sentence structure, and organization. The revised sentence also needs to fulfil semantic retention and syntactic soundness. To aide these efforts, we curate and make available a benchmark parallel dataset that can depict revising for concision. The dataset contains 536 pairs of sentences before and after revising, and all pairs are collected from college writing centres. We also present and evaluate the approaches to this problem, which may assist researchers in this area.