Existing research on Tabular Natural Language Inference (TNLI) exclusively examines the task in a monolingual setting where the tabular premise and hypothesis are in the same language. However, due to the uneven distribution of text resources on the web across languages, it is common to have the tabular premise in a high resource language and the hypothesis in a low resource language. As a result, we present the challenging task of bilingual Tabular Natural Language Inference (bTNLI), in which the tabular premise and a hypothesis over it are in two separate languages. We construct EI-InfoTabS: an English-Indic bTNLI dataset by translating the textual hypotheses of the English TNLI dataset InfoTabS into eleven major Indian languages. We thoroughly investigate how pre-trained multilingual models learn and perform on EI-InfoTabS. Our study shows that the performance on bTNLI can be close to its monolingual counterpart, with translate-train, translate-test and unified-train being strongly competitive baselines.
When pre-trained contextualized embedding-based models developed for unstructured data are adapted for structured tabular data, they perform admirably. However, recent probing studies show that these models use spurious correlations, and often predict inference labels by focusing on false evidence or ignoring it altogether. To study this issue, we introduce the task of Trustworthy Tabular Reasoning, where a model needs to extract evidence to be used for reasoning, in addition to predicting the label. As a case study, we propose a two-stage sequential prediction approach, which includes an evidence extraction and an inference stage. First, we crowdsource evidence row labels and develop several unsupervised and supervised evidence extraction strategies for InfoTabS, a tabular NLI benchmark. Our evidence extraction strategy outperforms earlier baselines. On the downstream tabular inference task, using only the automatically extracted evidence as the premise, our approach outperforms prior benchmarks.
While large pre-trained language models accumulate a lot of knowledge in their parameters, it has been demonstrated that augmenting it with non-parametric retrieval-based memory has a number of benefits ranging from improved accuracy to data efficiency for knowledge-focused tasks such as question answering. In this work, we apply retrieval-based modeling ideas to the challenging complex task of multi-domain task-oriented semantic parsing for conversational assistants. Our technique, RetroNLU, extends a sequence-to-sequence model architecture with a retrieval component, which is used to retrieve existing similar samples and present them as an additional context to the model. In particular, we analyze two settings, where we augment an input with (a) retrieved nearest neighbor utterances (utterance-nn), and (b) ground-truth semantic parses of nearest neighbor utterances (semparse-nn). Our technique outperforms the baseline method by 1.5% absolute macro-F1, especially at the low resource setting, matching the baseline model accuracy with only 40% of the complete data.Furthermore, we analyse the quality, model sensitivity, and performance of the nearest neighbor retrieval component’s for semantic parses of varied utterance complexity.
Existing approaches to constructing training data for Natural Language Inference (NLI) tasks, such as for semi-structured table reasoning, are either via crowdsourcing or fully automatic methods. However, the former is expensive and time consuming and thus limits scale, and the latter often produces naive examples that may lack complex reasoning. This paper develops a realistic semi-automated framework for data augmentation for tabular inference. Instead of manually generating a hypothesis for each table, our methodology generates hypothesis templates transferable to similar tables. In addition, our framework entails the creation of rational counterfactual tables based on human written logical constraints and premise paraphrasing. For our case study, we use the INFOTABS (Gupta et al., 2020), which is an entity centric tabular inference dataset. We observed that our framework could generate human-like tabular inference examples, which could benefit training data augmentation, especially in the scenario with limited supervision.
Creating challenging tabular inference data is essential for learning complex reasoning. Prior work has mostly relied on two data generation strategies. The first is human annotation, which yields linguistically diverse data but is difficult to scale. The second category for creation is synthetic generation, which is scalable and cost effective but lacks inventiveness. In this research, we present a framework for semi-automatically recasting existing tabular data to make use of the benefits of both approaches. We utilize our framework to build tabular NLI instances from five datasets that were initially intended for tasks like table2text creation, tabular Q/A, and semantic parsing. We demonstrate that recasted data could be used as evaluation benchmarks as well as augmentation data to enhance performance on tabular NLI tasks. Furthermore, we investigate the effectiveness of models trained on recasted data in the zero-shot scenario, and analyse trends in performance across different recasted datasets types.
Recent methods based on pre-trained language models have exhibited superior performance over tabular tasks (e.g., tabular NLI), despite showing inherent problems such as not using the right evidence and inconsistent predictions across inputs while reasoning over the tabular data (Gupta et al., 2021). In this work, we utilize Pattern-Exploiting Training (PET) (i.e., strategic MLM) on pre-trained language models to strengthen these tabular reasoning models’ pre-existing knowledge and reasoning abilities. Our upgraded model exhibits a superior understanding of knowledge facts and tabular reasoning compared to current baselines. Additionally, we demonstrate that such models are more effective for underlying downstream tasks of tabular inference on INFOTABS. Furthermore, we show our model’s robustness against adversarial sets generated through various character and word level perturbations.
Natural language inference on tabular data is a challenging task. Existing approaches lack the world and common sense knowledge required to perform at a human level. While massive amounts of KG data exist, approaches to integrate them with deep learning models to enhance tabular reasoning are uncommon. In this paper, we investigate a new approach using BiLSTMs to incorporate knowledge effectively into language models. Through extensive analysis, we show that our proposed architecture, Trans-KBLSTM improves the benchmark performance on InfoTabS, a tabular NLI dataset.
While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce INDICXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of INDICXNLI. By finetuning different pre-trained LMs on this INDICXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages.
Neural models command state-of-the-art performance across NLP tasks, including ones involving “reasoning”. Models claiming to reason about the evidence presented to them should attend to the correct parts of the input while avoiding spurious patterns therein, be self-consistent in their predictions across inputs, and be immune to biases derived from their pre-training in a nuanced, context- sensitive fashion. Do the prevalent *BERT- family of models do so? In this paper, we study this question using the problem of reasoning on tabular data. Tabular inputs are especially well-suited for the study—they admit systematic probes targeting the properties listed above. Our experiments demonstrate that a RoBERTa-based model, representative of the current state-of-the-art, fails at reasoning on the following counts: it (a) ignores relevant parts of the evidence, (b) is over- sensitive to annotation artifacts, and (c) relies on the knowledge encoded in the pre-trained language model rather than the evidence presented in its tabular inputs. Finally, through inoculation experiments, we show that fine- tuning the model on perturbed data does not help it overcome the above challenges.
The ability to reason about tabular or semi-structured knowledge is a fundamental problem for today’s Natural Language Processing (NLP) systems. While significant progress has been achieved in the direction of tabular reasoning, these advances are limited to English due to the absence of multilingual benchmark datasets for semi-structured data. In this paper, we use machine translation methods to construct a multilingual tabular NLI dataset, namely XINFOTABS, which expands the English tabular NLI dataset of INFOTABS to ten diverse languages. We also present several baselines for multilingual tabular reasoning, e.g., machine translation-based methods and cross-lingual. We discover that the XINFOTABS evaluation suite is both practical and challenging. As a result, this dataset will contribute to increased linguistic inclusion in tabular reasoning research and applications.
To grasp the true reasoning ability, the Natural Language Inference model should be evaluated on counterfactual data. TabPert facilitates this by generation of such counterfactual data for assessing model tabular reasoning issues. TabPert allows the user to update a table, change the hypothesis, change the labels, and highlight rows that are important for hypothesis classification. TabPert also details the technique used to automatically produce the table, as well as the strategies employed to generate the challenging hypothesis. These counterfactual tables and hypotheses, as well as the metadata, is then used to explore the existing model’s shortcomings methodically and quantitatively.
Most earlier work on text summarization is carried out on news article datasets. The summary in these datasets is naturally located at the beginning of the text. Hence, a model can spuriously utilize this correlation for summary generation instead of truly learning to summarize. To address this issue, we constructed a new dataset, SumPubMed , using scientific articles from the PubMed archive. We conducted a human analysis of summary coverage, redundancy, readability, coherence, and informativeness on SumPubMed . SumPubMed is challenging because (a) the summary is distributed throughout the text (not-localized on top), and (b) it contains rare domain-specific scientific terms. We observe that seq2seq models that adequately summarize news articles struggle to summarize SumPubMed . Thus, SumPubMed opens new avenues for the future improvement of models as well as the development of new evaluation metrics.
Reasoning about tabular information presents unique challenges to modern NLP approaches which largely rely on pre-trained contextualized embeddings of text. In this paper, we study these challenges through the problem of tabular natural language inference. We propose easy and effective modifications to how information is presented to a model for this task. We show via systematic experiments that these strategies substantially improve tabular inference performance.
Several NLP tasks need the effective repre-sentation of text documents.Arora et al.,2017 demonstrate that simple weighted aver-aging of word vectors frequently outperformsneural models. SCDV (Mekala et al., 2017)further extends this from sentences to docu-ments by employing soft and sparse cluster-ing over pre-computed word vectors. How-ever, both techniques ignore the polysemyand contextual character of words.In thispaper, we address this issue by proposingSCDV+BERT(ctxd), a simple and effective un-supervised representation that combines con-textualized BERT (Devlin et al., 2019) basedword embedding for word sense disambigua-tion with SCDV soft clustering approach. Weshow that our embeddings outperform origi-nal SCDV, pre-train BERT, and several otherbaselines on many classification datasets. Wealso demonstrate our embeddings effective-ness on other tasks, such as concept match-ing and sentence similarity.In addition,we show that SCDV+BERT(ctxd) outperformsfine-tune BERT and different embedding ap-proaches in scenarios with limited data andonly few shots examples.
State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens, tackling which remains a major challenge. The analysis of long-tailed phenomena in the context of structured prediction tasks is further hindered by the added complexities of search during inference. In this work, we quantitatively characterize such long-tailed phenomena at two levels of abstraction, namely, token classification and sequence generation. We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation by incorporating the inductive biases of beam search in the training process. We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy across different language pairs, especially on the generation of low-frequency words. We have released the code to reproduce our results.
An NLP model’s ability to reason should be independent of language. Previous works utilize Natural Language Inference (NLI) to understand the reasoning ability of models, mostly focusing on high resource languages like English. To address scarcity of data in low-resource languages such as Hindi, we use data recasting to create NLI datasets for four existing text classification datasets. Through experiments, we show that our recasted dataset is devoid of statistical irregularities and spurious patterns. We further study the consistency in predictions of the textual entailment models and propose a consistency regulariser to remove pairwise-inconsistencies in predictions. We propose a novel two-step classification method which uses textual-entailment predictions for classification task. We further improve the performance by using a joint-objective for classification and textual entailment. We therefore highlight the benefits of data recasting and improvements on classification performance using our approach with supporting experimental results.
User-generated contents’ score-based prediction and item recommendation has become an inseparable part of the online recommendation systems. The ratings allow people to express their opinions and may affect the market value of items and consumer confidence in e-commerce decisions. A major problem with the models designed for user review prediction is that they unknowingly neglect the rating bias occurring due to personal user bias preferences. We propose a tendency-based approach that models the user and item tendency for score prediction along with text review analysis with respect to ratings.
Word embeddings have become a staple of several natural language processing tasks, yet much remains to be understood about their properties. In this work, we analyze word embeddings in terms of their principal components and arrive at a number of novel and counterintuitive observations. In particular, we characterize the utility of variance explained by the principal components as a proxy for downstream performance. Furthermore, through syntactic probing of the principal embedding space, we show that the syntactic information captured by a principal component does not correlate with the amount of variance it explains. Consequently, we investigate the limitations of variance based embedding post-processing algorithms and demonstrate that such post-processing is counter-productive in sentence classification and machine translation tasks. Finally, we offer a few precautionary guidelines on applying variance based embedding post-processing and explain why non-isotropic geometry might be integral to word embedding performance.
In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.
Pre-trained word embeddings are used in several downstream applications as well as for constructing representations for sentences, paragraphs and documents. Recently, there has been an emphasis on improving the pretrained word vectors through post-processing algorithms. One improvement area is reducing the dimensionality of word embeddings. Reducing the size of word embeddings can improve their utility in memory constrained devices, benefiting several real world applications. In this work, we present a novel technique that efficiently combines PCA based dimensionality reduction with a recently proposed post-processing algorithm (Mu and Viswanath, 2018), to construct effective word embeddings of lower dimensions. Empirical evaluations on several benchmarks show that our algorithm efficiently reduces the embedding size while achieving similar or (more often) better performance than original embeddings. We have released the source code along with this paper.
While neural models show remarkable accuracy on individual predictions, their internal beliefs can be inconsistent across examples. In this paper, we formalize such inconsistency as a generalization of prediction error. We propose a learning framework for constraining models using logic rules to regularize them away from inconsistency. Our framework can leverage both labeled and unlabeled examples and is directly compatible with off-the-shelf learning schemes without model redesign. We instantiate our framework on natural language inference, where experiments show that enforcing invariants stated in logic can help make the predictions of neural models both accurate and consistent.
Automatic abstractive summary generation remains a significant open problem for natural language processing. In this work, we develop a novel pipeline for Semantic Abstractive Summarization (SAS). SAS, as introduced by Liu et. al. (2015) first generates an AMR graph of an input story, through which it extracts a summary graph and finally, creates summary sentences from this summary graph. Compared to earlier approaches, we develop a more comprehensive method to generate the story AMR graph using state-of-the-art co-reference resolution and Meta Nodes. Which we then use in a novel unsupervised algorithm based on how humans summarize a piece of text to extract the summary sub-graph. Our algorithm outperforms the state of the art SAS method by 1.7% F1 score in node prediction.
We present a feature vector formation technique for documents - Sparse Composite Document Vector (SCDV) - which overcomes several shortcomings of the current distributional paragraph vector representations that are widely used for text representation. In SCDV, word embeddings are clustered to capture multiple semantic contexts in which words occur. They are then chained together to form document topic-vectors that can express complex, multi-topic documents. Through extensive experiments on multi-class and multi-label classification tasks, we outperform the previous state-of-the-art method, NTSG. We also show that SCDV embeddings perform well on heterogeneous tasks like Topic Coherence, context-sensitive Learning and Information Retrieval. Moreover, we achieve a significant reduction in training and prediction times compared to other representation methods. SCDV achieves best of both worlds - better performance with lower time and space complexity.
Product classification is the task of automatically predicting a taxonomy path for a product in a predefined taxonomy hierarchy given a textual product description or title. For efficient product classification we require a suitable representation for a document (the textual description of a product) feature vector and efficient and fast algorithms for prediction.To address the above challenges, we propose a new distributional semantics representation for document vector formation. We also develop a new two-level ensemble approach utilising (with respect to the taxonomy tree) path-wise, node-wise and depth-wise classifiers to reduce error in the final product classification task. Our experiments show the effectiveness of the distributional representation and the ensemble approach on data sets from a leading e-commerce platform and achieve improved results on various evaluation metrics compared to earlier approaches.