Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts.Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel Counterfactual Prompt Learning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09% and 25.08% relative improvements across three few-shot scenarios on unseen test sets respectively.
Vision-and-Language Navigation (VLN) is a task to guide an embodied agent moving to a target position using language instructions. Despite the significant performance improvement, the wide use of fine-grained instructions fails to characterize more practical linguistic variations in reality. To fill in this gap, we introduce a new setting, namely Underspecified vision-and-Language Navigation (ULN), and associated evaluation datasets. ULN evaluates agents using multi-level underspecified instructions instead of purely fine-grained or coarse-grained, which is a more realistic and general setting. As a primary step toward ULN, we propose a VLN framework that consists of a classification module, a navigation agent, and an Exploitation-to-Exploration (E2E) module. Specifically, we propose to learn Granularity Specific Sub-networks (GSS) for the agent to ground multi-level instructions with minimal additional parameters. Then, our E2E module estimates grounding uncertainty and conducts multi-step lookahead exploration to improve the success rate further. Experimental results show that existing VLN models are still brittle to multi-level language underspecification. Our framework is more robust and outperforms the baselines on ULN by ~10% relative success rate across all levels.
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and navigates in real-life urban environments. With the lack of human-annotated instructions that illustrate the intricate urban scenes, outdoor VLN remains a challenging task to solve. In this paper, we introduce a Multimodal Text Style Transfer (MTST) learning approach and leverage external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.
Recent advances in language and vision push forward the research of captioning a single image to describing visual differences between image pairs. Suppose there are two images, I_1 and I_2, and the task is to generate a description W_1,2 comparing them, existing methods directly model I_1, I_2 -> W_1,2 mapping without the semantic understanding of individuals. In this paper, we introduce a Learning-to-Compare (L2C) model, which learns to understand the semantic structures of these two images and compare them while learning to describe each one. We demonstrate that L2C benefits from a comparison between explicit semantic representations and single-image captions, and generalizes better on the new testing image pairs. It outperforms the baseline on both automatic evaluation and human evaluation for the Birds-to-Words dataset.
Using natural language as a hint can supply an additional reward for playing sparse-reward games. Achieving a goal should involve several different hints, while the given hints are usually incomplete. Those unmentioned latent hints still rely on the sparse reward signal, and make the learning process difficult. In this paper, we propose semi-supervised initialization (SSI) that allows the agent to learn from various possible hints before training under different tasks. Experiments show that SSI not only helps to learn faster (1.2x) but also has a higher success rate (11% relative improvement) of the final policy.
Iterative Language-Based Image Editing (ILBIE) tasks follow iterative instructions to edit images step by step. Data scarcity is a significant issue for ILBIE as it is challenging to collect large-scale examples of images before and after instruction-based changes. Yet, humans still accomplish these editing tasks even when presented with an unfamiliar image-instruction pair. Such ability results from counterfactual thinking, the ability to think about possible alternatives to events that have happened already. In this paper, we introduce a Self-Supervised Counterfactual Reasoning (SSCR) framework that incorporates counterfactual thinking to overcome data scarcity. SSCR allows the model to consider out-of-distribution instructions paired with previous images. With the help of cross-task consistency (CTC), we train these counterfactual instructions in a self-supervised scenario. Extensive results show that SSCR improves the correctness of ILBIE in terms of both object identity and position, establishing a new state of the art (SOTA) on two IBLIE datasets (i-CLEVR and CoDraw). Even with only 50% of the training data, SSCR achieves a comparable result to using complete data.
In this paper, we present GraphRel, an end-to-end relation extraction model which uses graph convolutional networks (GCNs) to jointly learn named entities and relations. In contrast to previous baselines, we consider the interaction between named entities and relations via a 2nd-phase relation-weighted GCN to better extract relations. Linear and dependency structures are both used to extract both sequential and regional features of the text, and a complete word graph is further utilized to extract implicit features among all word pairs of the text. With the graph-based approach, the prediction for overlapping relations is substantially improved over previous sequential approaches. We evaluate GraphRel on two public datasets: NYT and WebNLG. Results show that GraphRel maintains high precision while increasing recall substantially. Also, GraphRel outperforms previous work by 3.2% and 5.8% (F1 score), achieving a new state-of-the-art for relation extraction.
We present LSTM-Shuttle, which applies human speed reading techniques to natural language processing tasks for accurate and efficient comprehension. In contrast to previous work, LSTM-Shuttle not only reads shuttling forward but also goes back. Shuttling forward enables high efficiency, and going backward gives the model a chance to recover lost information, ensuring better prediction. We evaluate LSTM-Shuttle on sentiment analysis, news classification, and cloze on IMDB, Rotten Tomatoes, AG, and Children’s Book Test datasets. We show that LSTM-Shuttle predicts both better and more quickly. To demonstrate how LSTM-Shuttle actually behaves, we also analyze the shuttling operation and present a case study.