Tom Ayoola


Improving Entity Disambiguation by Reasoning over a Knowledge Base
Tom Ayoola | Joseph Fisher | Andrea Pierleoni
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work in entity disambiguation (ED) has typically neglected structured knowledge base (KB) facts, and instead relied on a limited subset of KB information, such as entity descriptions or types. This limits the range of contexts in which entities can be disambiguated. To allow the use of all KB facts, as well as descriptions and types, we introduce an ED model which links entities by reasoning over a symbolic knowledge base in a fully differentiable fashion. Our model surpasses state-of-the-art baselines on six well-established ED datasets by 1.3 F1 on average. By allowing access to all KB information, our model is less reliant on popularity-based entity priors, and improves performance on the challenging ShadowLink dataset (which emphasises infrequent and ambiguous entities) by 12.7 F1.

ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking
Tom Ayoola | Shubhi Tyagi | Joseph Fisher | Christos Christodoulopoulos | Andrea Pierleoni
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

We introduce ReFinED, an efficient end-to-end entity linking model which uses fine-grained entity types and entity descriptions to perform linking. The model performs mention detection, fine-grained entity typing, and entity disambiguation for all mentions within a document in a single forward pass, making it more than 60 times faster than competitive existing approaches. ReFinED also surpasses state-of-the-art performance on standard entity linking datasets by an average of 3.7 F1. The model is capable of generalising to large-scale knowledge bases such as Wikidata (which has 15 times more entities than Wikipedia) and of zero-shot entity linking. The combination of speed, accuracy and scale makes ReFinED an effective and cost-efficient system for extracting entities from web-scale datasets, for which the model has been successfully deployed.


End-to-End Entity Resolution and Question Answering Using Differentiable Knowledge Graphs
Amir Saffari | Armin Oliya | Priyanka Sen | Tom Ayoola
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recently, end-to-end (E2E) trained models for question answering over knowledge graphs (KGQA) have delivered promising results using only a weakly supervised dataset. However, these models are trained and evaluated in a setting where hand-annotated question entities are supplied to the model, leaving the important and non-trivial task of entity resolution (ER) outside the scope of E2E learning. In this work, we extend the boundaries of E2E learning for KGQA to include the training of an ER component. Our model only needs the question text and the answer entities to train, and delivers a stand-alone QA model that does not require an additional ER component to be supplied during runtime. Our approach is fully differentiable, thanks to its reliance on a recent method for building differentiable KGs (Cohen et al., 2020). We evaluate our E2E trained model on two public datasets and show that it comes close to baseline models that use hand-annotated entities.