2022
pdf
abs
Are Embedding Spaces Interpretable? Results of an Intrusion Detection Evaluation on a Large French Corpus
Thibault Prouteau
|
Nicolas Dugué
|
Nathalie Camelin
|
Sylvain Meignier
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Word embedding methods allow to represent words as vectors in a space that is structured using word co-occurrences so that words with close meanings are close in this space. These vectors are then provided as input to automatic systems to solve natural language processing problems. Because interpretability is a necessary condition to trusting such systems, interpretability of embedding spaces, the first link in the chain is an important issue. In this paper, we thus evaluate the interpretability of vectors extracted with two approaches: SPINE a k-sparse auto-encoder, and SINr, a graph-based method. This evaluation is based on a Word Intrusion Task with human annotators. It is operated using a large French corpus, and is thus, as far as we know, the first large-scale experiment regarding word embedding interpretability on this language. Furthermore, contrary to the approaches adopted in the literature where the evaluation is done on a small sample of frequent words, we consider a more realistic use-case where most of the vocabulary is kept for the evaluation. This allows to show how difficult this task is, even though SPINE and SINr show some promising results. In particular, SINr results are obtained with a very low amount of computation compared to SPINE, while being similarly interpretable.
2020
pdf
abs
Apprentissage de plongements de mots sur des corpus en langue de spécialité : une étude d’impact (Learning word embeddings on domain specific corpora : an impact study )
Valentin Pelloin
|
Thibault Prouteau
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL
Les méthodes d’apprentissage de plongements lexicaux constituent désormais l’état de l’art pour la représentation du vocabulaire et des documents sous forme de vecteurs dans de nombreuses tâches de Traitement Automatique du Langage Naturel (TALN). Dans ce travail, nous considérons l’apprentissage et l’usage de plongements lexicaux dans le cadre de corpus en langue de spécialité de petite taille. En particulier, nous souhaitons savoir si dans ce cadre, il est préférable d’utiliser des plongements préappris sur des corpus très volumineux tels Wikipédia ou bien s’il est préférable d’apprendre des plongements sur ces corpus en langue de spécialité. Pour répondre à cette question, nous considérons deux corpus en langue de spécialité : O HSUMED issu du domaine médical, et un corpus de documentation technique, propriété de SNCF. Après avoir introduit ces corpus et évalué leur spécificité, nous définissons une tâche de classification. Pour cette tâche, nous choisissons d’utiliser en entrée d’un classifieur neuronal des représentations des documents qui sont soit basées sur des plongements appris sur les corpus de spécialité, soit sur des plongements appris sur Wikipédia. Notre analyse montre que les plongements appris sur Wikipédia fournissent de très bons résultats. Ceux-ci peuvent être utilisés comme une référence fiable, même si dans le cas d’O HSUMED, il vaut mieux apprendre des plongements sur ce même corpus. La discussion des résultats se fait en interrogeant les spécificités des deux corpus, mais ne permet pas d’établir clairement dans quels cas apprendre des plongements spécifiques au corpus.