Takashi Shibuya


2022

pdf
Good Examples Make A Faster Learner: Simple Demonstration-based Learning for Low-resource NER
Dong-Ho Lee | Akshen Kadakia | Kangmin Tan | Mahak Agarwal | Xinyu Feng | Takashi Shibuya | Ryosuke Mitani | Toshiyuki Sekiya | Jay Pujara | Xiang Ren
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advances in prompt-based learning have shown strong results on few-shot text classification by using cloze-style templates.Similar attempts have been made on named entity recognition (NER) which manually design templates to predict entity types for every text span in a sentence. However, such methods may suffer from error propagation induced by entity span detection, high cost due to enumeration of all possible text spans, and omission of inter-dependencies among token labels in a sentence. Here we present a simple demonstration-based learning method for NER, which lets the input be prefaced by task demonstrations for in-context learning. We perform a systematic study on demonstration strategy regarding what to include (entity examples, with or without surrounding context), how to select the examples, and what templates to use. Results on in-domain learning and domain adaptation show that the model’s performance in low-resource settings can be largely improved with a suitable demonstration strategy (e.g., a 4-17% improvement on 25 train instances). We also find that good demonstration can save many labeled examples and consistency in demonstration contributes to better performance.

2020

pdf
Nested Named Entity Recognition via Second-best Sequence Learning and Decoding
Takashi Shibuya | Eduard Hovy
Transactions of the Association for Computational Linguistics, Volume 8

When an entity name contains other names within it, the identification of all combinations of names can become difficult and expensive. We propose a new method to recognize not only outermost named entities but also inner nested ones. We design an objective function for training a neural model that treats the tag sequence for nested entities as the second best path within the span of their parent entity. In addition, we provide the decoding method for inference that extracts entities iteratively from outermost ones to inner ones in an outside-to-inside way. Our method has no additional hyperparameters to the conditional random field based model widely used for flat named entity recognition tasks. Experiments demonstrate that our method performs better than or at least as well as existing methods capable of handling nested entities, achieving F1-scores of 85.82%, 84.34%, and 77.36% on ACE-2004, ACE-2005, and GENIA datasets, respectively.