Sumukh S


“Kanglish alli names!” Named Entity Recognition for Kannada-English Code-Mixed Social Media Data
Sumukh S | Manish Shrivastava
Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022)

Code-mixing (CM) is a frequently observed phenomenon on social media platforms in multilingual societies such as India. While the increase in code-mixed content on these platforms provides good amount of data for studying various aspects of code-mixing, the lack of automated text analysis tools makes such studies difficult. To overcome the same, tools such as language identifiers and parts of-speech (POS) taggers for analysing code-mixed data have been developed. One such tool is Named Entity Recognition (NER), an important Natural Language Processing (NLP) task, which is not only a subtask of Information Extraction, but is also needed for downstream NLP tasks such as semantic role labeling. While entity extraction from social media data is generally difficult due to its informal nature, code-mixed data further complicates the problem due to its informal, unstructured and incomplete information. In this work, we present the first ever corpus for Kannada-English code-mixed social media data with the corresponding named entity tags for NER. We provide strong baselines with machine learning classification models such as CRF, Bi-LSTM, and Bi-LSTM-CRF on our corpus with word, character, and lexical features.


Detection and Annotation of Events in Kannada
Suhan Prabhu | Ujwal Narayan | Alok Debnath | Sumukh S | Manish Shrivastava
16th Joint ACL - ISO Workshop on Interoperable Semantic Annotation PROCEEDINGS

In this paper, we provide the basic guidelines towards the detection and linguistic analysis of events in Kannada. Kannada is a morphologically rich, resource poor Dravidian language spoken in southern India. As most information retrieval and extraction tasks are resource intensive, very little work has been done on Kannada NLP, with almost no efforts in discourse analysis and dataset creation for representing events or other semantic annotations in the text. In this paper, we linguistically analyze what constitutes an event in this language, the challenges faced with discourse level annotation and representation due to the rich derivational morphology of the language that allows free word order, numerous multi-word expressions, adverbial participle constructions and constraints on subject-verb relations. Therefore, this paper is one of the first attempts at a large scale discourse level annotation for Kannada, which can be used for semantic annotation and corpus development for other tasks in the language.