Subhadarshi Panda


2022

pdf
Silo NLP’s Participation at WAT2022
Shantipriya Parida | Subhadarshi Panda | Stig-Arne Grönroos | Mark Granroth-Wilding | Mika Koistinen
Proceedings of the 9th Workshop on Asian Translation

This paper provides the system description of “Silo NLP’s” submission to the Workshop on Asian Translation (WAT2022). We have participated in the Indic Multimodal tasks (English->Hindi, English->Malayalam, and English->Bengali, Multimodal Translation). For text-only translation, we used the Transformer and fine-tuned the mBART. For multimodal translation, we used the same architecture and extracted object tags from the images to use as visual features concatenated with the text sequence for input. Our submission tops many tasks including English->Hindi multimodal translation (evaluation test), English->Malayalam text-only and multimodal translation (evaluation test), English->Bengali multimodal translation (challenge test), and English->Bengali text-only translation (evaluation test).

pdf
Hausa Visual Genome: A Dataset for Multi-Modal English to Hausa Machine Translation
Idris Abdulmumin | Satya Ranjan Dash | Musa Abdullahi Dawud | Shantipriya Parida | Shamsuddeen Muhammad | Ibrahim Sa’id Ahmad | Subhadarshi Panda | Ondřej Bojar | Bashir Shehu Galadanci | Bello Shehu Bello
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Multi-modal Machine Translation (MMT) enables the use of visual information to enhance the quality of translations, especially where the full context is not available to enable the unambiguous translation in standard machine translation. Despite the increasing popularity of such technique, it lacks sufficient and qualitative datasets to maximize the full extent of its potential. Hausa, a Chadic language, is a member of the Afro-Asiatic language family. It is estimated that about 100 to 150 million people speak the language, with more than 80 million indigenous speakers. This is more than any of the other Chadic languages. Despite the large number of speakers, the Hausa language is considered as a low resource language in natural language processing (NLP). This is due to the absence of enough resources to implement most of the tasks in NLP. While some datasets exist, they are either scarce, machine-generated or in the religious domain. Therefore, there is the need to create training and evaluation data for implementing machine learning tasks and bridging the research gap in the language. This work presents the Hausa Visual Genome (HaVG), a dataset that contains the description of an image or a section within the image in Hausa and its equivalent in English. The dataset was prepared by automatically translating the English description of the images in the Hindi Visual Genome (HVG). The synthetic Hausa data was then carefully postedited, taking into cognizance the respective images. The data is made of 32,923 images and their descriptions that are divided into training, development, test, and challenge test set. The Hausa Visual Genome is the first dataset of its kind and can be used for Hausa-English machine translation, multi-modal research, image description, among various other natural language processing and generation tasks.

pdf
Improving Cross-domain, Cross-lingual and Multi-modal Deception Detection
Subhadarshi Panda | Sarah Ita Levitan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

With the increase of deception and misinformation especially in social media, it has become crucial to be able to develop machine learning methods to automatically identify deceptive language. In this proposal, we identify key challenges underlying deception detection in cross-domain, cross-lingual and multi-modal settings. To improve cross-domain deception classification, we propose to use inter-domain distance to identify a suitable source domain for a given target domain. We propose to study the efficacy of multilingual classification models vs translation for cross-lingual deception classification. Finally, we propose to better understand multi-modal deception detection and explore methods to weight and combine information from multiple modalities to improve multi-modal deception classification.

pdf
Automatic Generation of Distractors for Fill-in-the-Blank Exercises with Round-Trip Neural Machine Translation
Subhadarshi Panda | Frank Palma Gomez | Michael Flor | Alla Rozovskaya
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

In a fill-in-the-blank exercise, a student is presented with a carrier sentence with one word hidden, and a multiple-choice list that includes the correct answer and several inappropriate options, called distractors. We propose to automatically generate distractors using round-trip neural machine translation: the carrier sentence is translated from English into another (pivot) language and back, and distractors are produced by aligning the original sentence and its round-trip translation. We show that using hundreds of translations for a given sentence allows us to generate a rich set of challenging distractors. Further, using multiple pivot languages produces a diverse set of candidates. The distractors are evaluated against a real corpus of cloze exercises and checked manually for validity. We demonstrate that the proposed method significantly outperforms two strong baselines.

2021

pdf
Multimodal Neural Machine Translation System for English to Bengali
Shantipriya Parida | Subhadarshi Panda | Satya Prakash Biswal | Ketan Kotwal | Arghyadeep Sen | Satya Ranjan Dash | Petr Motlicek
Proceedings of the First Workshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)

Multimodal Machine Translation (MMT) systems utilize additional information from other modalities beyond text to improve the quality of machine translation (MT). The additional modality is typically in the form of images. Despite proven advantages, it is indeed difficult to develop an MMT system for various languages primarily due to the lack of a suitable multimodal dataset. In this work, we develop an MMT for English-> Bengali using a recently published Bengali Visual Genome (BVG) dataset that contains images with associated bilingual textual descriptions. Through a comparative study of the developed MMT system vis-a-vis a Text-to-text translation, we demonstrate that the use of multimodal data not only improves the translation performance improvement in BLEU score of +1.3 on the development set, +3.9 on the evaluation test, and +0.9 on the challenge test set but also helps to resolve ambiguities in the pure text description. As per best of our knowledge, our English-Bengali MMT system is the first attempt in this direction, and thus, can act as a baseline for the subsequent research in MMT for low resource languages.

pdf
Open Machine Translation for Low Resource South American Languages (AmericasNLP 2021 Shared Task Contribution)
Shantipriya Parida | Subhadarshi Panda | Amulya Dash | Esau Villatoro-Tello | A. Seza Doğruöz | Rosa M. Ortega-Mendoza | Amadeo Hernández | Yashvardhan Sharma | Petr Motlicek
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper describes the team (“Tamalli”)’s submission to AmericasNLP2021 shared task on Open Machine Translation for low resource South American languages. Our goal was to evaluate different Machine Translation (MT) techniques, statistical and neural-based, under several configuration settings. We obtained the second-best results for the language pairs “Spanish-Bribri”, “Spanish-Asháninka”, and “Spanish-Rarámuri” in the category “Development set not used for training”. Our performed experiments will serve as a point of reference for researchers working on MT with low-resource languages.

pdf
Multilingual Paraphrase Generation For Bootstrapping New Features in Task-Oriented Dialog Systems
Subhadarshi Panda | Caglar Tirkaz | Tobias Falke | Patrick Lehnen
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

The lack of labeled training data for new features is a common problem in rapidly changing real-world dialog systems. As a solution, we propose a multilingual paraphrase generation model that can be used to generate novel utterances for a target feature and target language. The generated utterances can be used to augment existing training data to improve intent classification and slot labeling models. We evaluate the quality of generated utterances using intrinsic evaluation metrics and by conducting downstream evaluation experiments with English as the source language and nine different target languages. Our method shows promise across languages, even in a zero-shot setting where no seed data is available.

pdf
HunterSpeechLab at GermEval 2021: Does Your Comment Claim A Fact? Contextualized Embeddings for German Fact-Claiming Comment Classification
Subhadarshi Panda | Sarah Ita Levitan
Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments

In this paper we investigate the efficacy of using contextual embeddings from multilingual BERT and German BERT in identifying fact-claiming comments in German on social media. Additionally, we examine the impact of formulating the classification problem as a multi-task learning problem, where the model identifies toxicity and engagement of the comment in addition to identifying whether it is fact-claiming. We provide a thorough comparison of the two BERT based models compared with a logistic regression baseline and show that German BERT features trained using a multi-task objective achieves the best F1 score on the test set. This work was done as part of a submission to GermEval 2021 shared task on the identification of fact-claiming comments.

pdf
Shuffled-token Detection for Refining Pre-trained RoBERTa
Subhadarshi Panda | Anjali Agrawal | Jeewon Ha | Benjamin Bloch
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

State-of-the-art transformer models have achieved robust performance on a variety of NLP tasks. Many of these approaches have employed domain agnostic pre-training tasks to train models that yield highly generalized sentence representations that can be fine-tuned for specific downstream tasks. We propose refining a pre-trained NLP model using the objective of detecting shuffled tokens. We use a sequential approach by starting with the pre-trained RoBERTa model and training it using our approach. Applying random shuffling strategy on the word-level, we found that our approach enables the RoBERTa model achieve better performance on 4 out of 7 GLUE tasks. Our results indicate that learning to detect shuffled tokens is a promising approach to learn more coherent sentence representations.

pdf
NLPHut’s Participation at WAT2021
Shantipriya Parida | Subhadarshi Panda | Ketan Kotwal | Amulya Ratna Dash | Satya Ranjan Dash | Yashvardhan Sharma | Petr Motlicek | Ondřej Bojar
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

This paper provides the description of shared tasks to the WAT 2021 by our team “NLPHut”. We have participated in the English→Hindi Multimodal translation task, English→Malayalam Multimodal translation task, and Indic Multi-lingual translation task. We have used the state-of-the-art Transformer model with language tags in different settings for the translation task and proposed a novel “region-specific” caption generation approach using a combination of image CNN and LSTM for the Hindi and Malayalam image captioning. Our submission tops in English→Malayalam Multimodal translation task (text-only translation, and Malayalam caption), and ranks second-best in English→Hindi Multimodal translation task (text-only translation, and Hindi caption). Our submissions have also performed well in the Indic Multilingual translation tasks.

pdf
Detecting Multilingual COVID-19 Misinformation on Social Media via Contextualized Embeddings
Subhadarshi Panda | Sarah Ita Levitan
Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with English BERT achieves the best results for English, and multilingual BERT achieves the best results for Bulgarian and Arabic. We experimented with zero shot, few shot, and target-only conditions to evaluate the impact of target-language training data on classifier performance, and to understand the capabilities of different models to generalize across languages in detecting misinformation online. This work was performed as a submission to the shared task, NLP4IF 2021: Fighting the COVID-19 Infodemic. Our best models achieved the second best evaluation test results for Bulgarian and Arabic among all the participating teams and obtained competitive scores for English.

2018

pdf
Hunter NMT System for WMT18 Biomedical Translation Task: Transfer Learning in Neural Machine Translation
Abdul Khan | Subhadarshi Panda | Jia Xu | Lampros Flokas
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the submission of Hunter Neural Machine Translation (NMT) to the WMT’18 Biomedical translation task from English to French. The discrepancy between training and test data distribution brings a challenge to translate text in new domains. Beyond the previous work of combining in-domain with out-of-domain models, we found accuracy and efficiency gain in combining different in-domain models. We conduct extensive experiments on NMT with transfer learning. We train on different in-domain Biomedical datasets one after another. That means parameters of the previous training serve as the initialization of the next one. Together with a pre-trained out-of-domain News model, we enhanced translation quality with 3.73 BLEU points over the baseline. Furthermore, we applied ensemble learning on training models of intermediate epochs and achieved an improvement of 4.02 BLEU points over the baseline. Overall, our system is 11.29 BLEU points above the best system of last year on the EDP 2017 test set.