Previous research for adapting a general neural machine translation (NMT) model into a specific domain usually neglects the diversity in translation within the same domain, which is a core problem for domain adaptation in real-world scenarios. One representative of such challenging scenarios is to deploy a translation system for a conference with a specific topic, e.g., global warming or coronavirus, where there are usually extremely less resources due to the limited schedule. To motivate wider investigation in such a scenario, we present a real-world fine-grained domain adaptation task in machine translation (FGraDA). The FGraDA dataset consists of Chinese-English translation task for four sub-domains of information technology: autonomous vehicles, AI education, real-time networks, and smart phone. Each sub-domain is equipped with a development set and test set for evaluation purposes. To be closer to reality, FGraDA does not employ any in-domain bilingual training data but provides bilingual dictionaries and wiki knowledge base, which can be easier obtained within a short time. We benchmark the fine-grained domain adaptation task and present in-depth analyses showing that there are still challenging problems to further improve the performance with heterogeneous resources.
Interactive neural machine translation (INMT) is able to guarantee high-quality translations by taking human interactions into account. Existing IMT systems relying on lexical constrained decoding (LCD) enable humans to translate in a flexible translation order beyond the left-to-right. However, they typically suffer from two significant limitations in translation efficiency and quality due to the reliance on LCD. In this work, we propose a novel BiTIIMT system, Bilingual Text-Infilling for Interactive Neural Machine Translation. The key idea to BiTIIMT is Bilingual Text-infilling (BiTI) which aims to fill missing segments in a manually revised translation for a given source sentence. We propose a simple yet effective solution by casting this task as a sequence-to-sequence task. In this way, our system performs decoding without explicit constraints and makes full use of revised words for better translation prediction. Experiment results show that BiTiIMT performs significantly better and faster than state-of-the-art LCD-based IMT on three translation tasks.
Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
This paper does not aim at introducing a novel model for document-level neural machine translation. Instead, we head back to the original Transformer model and hope to answer the following question: Is the capacity of current models strong enough for document-level translation? Interestingly, we observe that the original Transformer with appropriate training techniques can achieve strong results for document translation, even with a length of 2000 words. We evaluate this model and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that document-level Transformer models outperforms sentence-level ones and many previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.
Complaining is a speech act that expresses a negative inconsistency between reality and human’s expectations. While prior studies mostly focus on identifying the existence or the type of complaints, in this work, we present the first study in computational linguistics of measuring the intensity of complaints from text. Analyzing complaints from such perspective is particularly useful, as complaints of certain degrees may cause severe consequences for companies or organizations. We first collect 3,103 posts about complaints in education domain from Weibo, a popular Chinese social media platform. These posts are then annotated with complaints intensity scores using Best-Worst Scaling (BWS) method. We show that complaints intensity can be accurately estimated by computational models with best mean square error achieving 0.11. Furthermore, we conduct a comprehensive linguistic analysis around complaints, including the connections between complaints and sentiment, and a cross-lingual comparison for complaints expressions used by Chinese and English speakers. We finally show that our complaints intensity scores can be incorporated for better estimating the popularity of posts on social media.
In recent years, vision and language pre-training (VLP) models have advanced the state-of-the-art results in a variety of cross-modal downstream tasks. Aligning cross-modal semantics is claimed to be one of the essential capabilities of VLP models. However, it still remains unclear about the inner working mechanism of alignment in VLP models. In this paper, we propose a new probing method that is based on image captioning to first empirically study the cross-modal semantics alignment of VLP models. Our probing method is built upon the fact that given an image-caption pair, the VLP models will give a score, indicating how well two modalities are aligned; maximizing such scores will generate sentences that VLP models believe are of good alignment. Analyzing these sentences thus will reveal in what way different modalities are aligned and how well these alignments are in VLP models. We apply our probing method to five popular VLP models, including UNITER, ROSITA, ViLBERT, CLIP, and LXMERT, and provide a comprehensive analysis of the generated captions guided by these models. Our results show that VLP models (1) focus more on just aligning objects with visual words, while neglecting global semantics; (2) prefer fixed sentence patterns, thus ignoring more important textual information including fluency and grammar; and (3) deem the captions with more visual words are better aligned with images. These findings indicate that VLP models still have weaknesses in cross-modal semantics alignment and we hope this work will draw researchers’ attention to such problems when designing a new VLP model.
Recently, non-autoregressive (NAR) neural machine translation models have received increasing attention due to their efficient parallel decoding.However, the probabilistic framework of NAR models necessitates conditional independence assumption on target sequences, falling short of characterizing human language data.This drawback results in less informative learning signals for NAR models under conventional MLE training, thereby yielding unsatisfactory accuracy compared to their autoregressive (AR) counterparts.In this paper, we propose a simple and model-agnostic multi-task learning framework to provide more informative learning signals.During training stage, we introduce a set of sufficiently weak AR decoders that solely rely on the information provided by NAR decoder to make prediction, forcing the NAR decoder to become stronger or else it will be unable to support its weak AR partners.Experiments on WMT and IWSLT datasets show that our approach can consistently improve accuracy of multiple NAR baselines without adding any additional decoding overhead.
As one of the challenging NLP tasks, designing math word problem (MWP) solvers has attracted increasing research attention for the past few years. In previous work, models designed by taking into account the properties of the binary tree structure of mathematical expressions at the output side have achieved better performance. However, the expressions corresponding to a MWP are often diverse (e.g., n1+n2 × n3-n4, n3× n2-n4+n1, etc.), and so are the corresponding binary trees, which creates difficulties in model learning due to the non-deterministic output space. In this paper, we propose the Structure-Unified M-Tree Coding Solver (SUMC-Solver), which applies a tree with any M branches (M-tree) to unify the output structures. To learn the M-tree, we use a mapping to convert the M-tree into the M-tree codes, where codes store the information of the paths from tree root to leaf nodes and the information of leaf nodes themselves, and then devise a Sequence-to-Code (seq2code) model to generate the codes. Experimental results on the widely used MAWPS and Math23K datasets have demonstrated that SUMC-Solver not only outperforms several state-of-the-art models under similar experimental settings but also performs much better under low-resource conditions.
Automatic word segmentation and part-of-speech tagging of ancient books can help relevant researchers to study ancient texts. In recent years, pre-trained language models have achieved significant improvements on text processing tasks. SikuRoberta is a pre-trained language model specially designed for automatic analysis of ancient Chinese texts. Although SikuRoberta significantly boosts performance on WSG and POS tasks on ancient Chinese texts, the lack of labeled data still limits the performance of the model. In this paper, to alleviate the problem of insufficient training data, We define hybrid tags to integrate WSG and POS tasks and design Roberta-CRF model to predict tags for each Chinese characters. Moreover, We generate synthetic labeled data based on the LSTM language model. To further mine knowledge in SikuRoberta, we generate the synthetic unlabeled data based on the Masked LM. Experiments show that the performance of the model is improved with the synthetic data, indicating that the effectiveness of the data augmentation methods.
Multi-class unknown intent detection has made remarkable progress recently. However, it has a strong assumption that each utterance has only one intent, which does not conform to reality because utterances often have multiple intents. In this paper, we propose a more desirable task, multi-label unknown intent detection, to detect whether the utterance contains the unknown intent, in which each utterance may contain multiple intents. In this task, the unique utterances simultaneously containing known and unknown intents make existing multi-class methods easy to fail. To address this issue, we propose an intuitive and effective method to recognize whether All Intents contained in the utterance are Known (AIK). Our high-level idea is to predict the utterance’s intent number, then check whether the utterance contains the same number of known intents. If the number of known intents is less than the number of intents, it implies that the utterance also contains unknown intents. We benchmark AIK over existing methods, and empirical results suggest that our method obtains state-of-the-art performances. For example, on the MultiWOZ 2.3 dataset, AIK significantly reduces the FPR95 by 12.25% compared to the best baseline.
Recent studies show that the attention heads in Transformer are not equal. We relate this phenomenon to the imbalance training of multi-head attention and the model dependence on specific heads. To tackle this problem, we propose a simple masking method: HeadMask, in two specific ways. Experiments show that translation improvements are achieved on multiple language pairs. Subsequent empirical analyses also support our assumption and confirm the effectiveness of the method.
Target-oriented multimodal sentiment classification (TMSC) is a new subtask of aspect-based sentiment analysis, which aims to determine the sentiment polarity of the opinion target mentioned in a (sentence, image) pair. Recently, dominant works employ the attention mechanism to capture the corresponding visual representations of the opinion target, and then aggregate them as evidence to make sentiment predictions. However, they still suffer from two problems: (1) The granularity of the opinion target in two modalities is inconsistent, which causes visual attention sometimes fail to capture the corresponding visual representations of the target; (2) Even though it is captured, there are still significant differences between the visual representations expressing the same mood, which brings great difficulty to sentiment prediction. To this end, we propose a novel Knowledge-enhanced Framework (KEF) in this paper, which can successfully exploit adjective-noun pairs extracted from the image to improve the visual attention capability and sentiment prediction capability of the TMSC task. Extensive experimental results show that our framework consistently outperforms state-of-the-art works on two public datasets.
This paper presents submissions of the NJUNLP team in WMT 2022Quality Estimation shared task 1, where the goal is to predict the sentence-level and word-level quality for target machine translations. Our system explores pseudo data and multi-task learning. We propose several novel methods to generate pseudo data for different annotations using the conditional masked language model and the neural machine translation model. The proposed methods control the decoding process to generate more real pseudo translations. We pre-train the XLMR-large model with pseudo data and then fine-tune this model with real data both in the way of multi-task learning. We jointly learn sentence-level scores (with regression and rank tasks) and word-level tags (with a sequence tagging task). Our system obtains competitive results on different language pairs and ranks first place on both sentence- and word-level sub-tasks of the English-German language pair.
Quality estimation (QE) is a crucial method to investigate automatic methods for estimating the quality of machine translation results without reference translations. This paper presents Huawei Translation Services Center’s (HW-TSC’s) work called CrossQE in WMT 2022 QE shared tasks 1 and 2, namely sentence- and word- level quality prediction and explainable QE.CrossQE employes the framework of predictor-estimator for task 1, concretely with a pre-trained cross-lingual XLM-RoBERTa large as predictor and task-specific classifier or regressor as estimator. An extensive set of experimental results show that after adding bottleneck adapter layer, mean teacher loss, masked language modeling task loss and MC dropout methods in CrossQE, the performance has improved to a certain extent. For task 2, CrossQE calculated the cosine similarity between each word feature in the target and each word feature in the source by task 1 sentence-level QE system’s predictor, and used the inverse value of maximum similarity between each word in the target and the source as the word translation error risk value. Moreover, CrossQE has outstanding performance on QE test sets of WMT 2022.
How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. However, non-parametric methods are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.
Large-scale multi-label text classification (LMTC) tasks often face long-tailed label distributions, where many labels have few or even no training instances. Although current methods can exploit prior knowledge to handle these few/zero-shot labels, they neglect the meta-knowledge contained in the dataset that can guide models to learn with few samples. In this paper, for the first time, this problem is addressed from a meta-learning perspective. However, the simple extension of meta-learning approaches to multi-label classification is sub-optimal for LMTC tasks due to long-tailed label distribution and coexisting of few- and zero-shot scenarios. We propose a meta-learning approach named META-LMTC. Specifically, it constructs more faithful and more diverse tasks according to well-designed sampling strategies and directly incorporates the objective of adapting to new low-resource tasks into the meta-learning phase. Extensive experiments show that META-LMTC achieves state-of-the-art performance against strong baselines and can still enhance powerful BERTlike models.
Recently, kNN-MT (Khandelwal et al., 2020) has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level k-nearest-neighbor (kNN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for k-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of the translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation. Our implementation is open-sourced at https://github. com/zhengxxn/UDA-KNN.
kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN algorithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.
Subword segmentation algorithms have been a de facto choice when building neural machine translation systems. However, most of them need to learn a segmentation model based on some heuristics, which may produce sub-optimal segmentation. This can be problematic in some scenarios when the target language has rich morphological changes or there is not enough data for learning compact composition rules. Translating at fully character level has the potential to alleviate the issue, but empirical performances of character-based models has not been fully explored. In this paper, we present an in-depth comparison between character-based and subword-based NMT systems under three settings: translating to typologically diverse languages, training with low resource, and adapting to unseen domains. Experiment results show strong competitiveness of character-based models. Further analyses show that compared to subword-based models, character-based models are better at handling morphological phenomena, generating rare and unknown words, and more suitable for transferring to unseen domains.
Non-autoregressive Transformer is a promising text generation model. However, current non-autoregressive models still fall behind their autoregressive counterparts in translation quality. We attribute this accuracy gap to the lack of dependency modeling among decoder inputs. In this paper, we propose CNAT, which learns implicitly categorical codes as latent variables into the non-autoregressive decoding. The interaction among these categorical codes remedies the missing dependencies and improves the model capacity. Experiment results show that our model achieves comparable or better performance in machine translation tasks than several strong baselines.
This paper presents our work in WMT 2021 Quality Estimation (QE) Shared Task. We participated in all of the three sub-tasks, including Sentence-Level Direct Assessment (DA) task, Word and Sentence-Level Post-editing Effort task and Critical Error Detection task, in all language pairs. Our systems employ the framework of Predictor-Estimator, concretely with a pre-trained XLM-Roberta as Predictor and task-specific classifier or regressor as Estimator. For all tasks, we improve our systems by incorporating post-edit sentence or additional high-quality translation sentence in the way of multitask learning or encoding it with predictors directly. Moreover, in zero-shot setting, our data augmentation strategy based on Monte-Carlo Dropout brings up significant improvement on DA sub-task. Notably, our submissions achieve remarkable results over all tasks.
This paper describes our system of the sentence-level and word-level Quality Estimation Shared Task of WMT20. Our system is based on the QE Brain, and we simply enhance it by injecting noise at the target side. And to obtain the deep bi-directional information, we use a masked language model at the target side instead of two single directional decoders. Meanwhile, we try to use the extra QE data from the WMT17 and WMT19 to improve our system’s performance. Finally, we ensemble the features or the results from different models to get our best results. Our system finished fifth in the end at sentence-level on both EN-ZH and EN-DE language pairs.
Recent proposed approaches have made promising progress in dialogue state tracking (DST). However, in multi-domain scenarios, ellipsis and reference are frequently adopted by users to express values that have been mentioned by slots from other domains. To handle these phenomena, we propose a Dialogue State Tracking with Slot Connections (DST-SC) model to explicitly consider slot correlations across different domains. Given a target slot, the slot connecting mechanism in DST-SC can infer its source slot and copy the source slot value directly, thus significantly reducing the difficulty of learning and reasoning. Experimental results verify the benefits of explicit slot connection modeling, and our model achieves state-of-the-art performance on MultiWOZ 2.0 and MultiWOZ 2.1 datasets.
Definition generation, which aims to automatically generate dictionary definitions for words, has recently been proposed to assist the construction of dictionaries and help people understand unfamiliar texts. However, previous works hardly consider explicitly modeling the “components” of definitions, leading to under-specific generation results. In this paper, we propose ESD, namely Explicit Semantic Decomposition for definition Generation, which explicitly decomposes the meaning of words into semantic components, and models them with discrete latent variables for definition generation. Experimental results show that achieves top results on WordNet and Oxford benchmarks, outperforming strong previous baselines.
Neural machine translation systems tend to fail on less decent inputs despite its significant efficacy, which may significantly harm the credibility of these systems—fathoming how and when neural-based systems fail in such cases is critical for industrial maintenance. Instead of collecting and analyzing bad cases using limited handcrafted error features, here we investigate this issue by generating adversarial examples via a new paradigm based on reinforcement learning. Our paradigm could expose pitfalls for a given performance metric, e.g., BLEU, and could target any given neural machine translation architecture. We conduct experiments of adversarial attacks on two mainstream neural machine translation architectures, RNN-search, and Transformer. The results show that our method efficiently produces stable attacks with meaning-preserving adversarial examples. We also present a qualitative and quantitative analysis for the preference pattern of the attack, demonstrating its capability of pitfall exposure.
It is well-understood that different algorithms, training processes, and corpora produce different word embeddings. However, less is known about the relation between different embedding spaces, i.e. how far different sets of em-beddings deviate from each other. In this paper, we propose a novel metric called Relative Pairwise Inner Product Distance (RPD) to quantify the distance between different sets of word embeddings. This unitary-invariant metric has a unified scale for comparing different sets of word embeddings. Based on the properties of RPD, we study the relations of word embeddings of different algorithms systematically and investigate the influence of different training processes and corpora. The results shed light on the poorly understood word embeddings and justify RPD as a measure of the distance of embedding space.
Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant language pairs, e.g., English-Japanese. In this work, we show that this failure results from the gap between the actual initialization performance and the minimum initialization performance for the self-learning to succeed. We propose Iterative Dimension Reduction to bridge this gap. Our experiments show that this simple method does not hamper the performance of similar language pairs and achieves an accuracy of 13.64 55.53% between English and four distant languages, i.e., Chinese, Japanese, Vietnamese and Thai.
Current predominant neural machine translation (NMT) models often have a deep structure with large amounts of parameters, making these models hard to train and easily suffering from over-fitting. A common practice is to utilize a validation set to evaluate the training process and select the best checkpoint. Average and ensemble techniques on checkpoints can lead to further performance improvement. However, as these methods do not affect the training process, the system performance is restricted to the checkpoints generated in original training procedure. In contrast, we propose an online knowledge distillation method. Our method on-the-fly generates a teacher model from checkpoints, guiding the training process to obtain better performance. Experiments on several datasets and language pairs show steady improvement over a strong self-attention-based baseline system. We also provide analysis on data-limited setting against over-fitting. Furthermore, our method leads to an improvement in a machine reading experiment as well.
Opinion target extraction and opinion words extraction are two fundamental subtasks in Aspect Based Sentiment Analysis (ABSA). Recently, many methods have made progress on these two tasks. However, few works aim at extracting opinion targets and opinion words as pairs. In this paper, we propose a novel sequence labeling subtask for ABSA named TOWE (Target-oriented Opinion Words Extraction), which aims at extracting the corresponding opinion words for a given opinion target. A target-fused sequence labeling neural network model is designed to perform this task. The opinion target information is well encoded into context by an Inward-Outward LSTM. Then left and right contexts of the opinion target and the global context are combined to find the corresponding opinion words. We build four datasets for TOWE based on several popular ABSA benchmarks from laptop and restaurant reviews. The experimental results show that our proposed model outperforms the other compared methods significantly. We believe that our work may not only be helpful for downstream sentiment analysis task, but can also be used for pair-wise opinion summarization.
Distant supervision has obtained great progress on relation classification task. However, it still suffers from noisy labeling problem. Different from previous works that underutilize noisy data which inherently characterize the property of classification, in this paper, we propose RCEND, a novel framework to enhance Relation Classification by Exploiting Noisy Data. First, an instance discriminator with reinforcement learning is designed to split the noisy data into correctly labeled data and incorrectly labeled data. Second, we learn a robust relation classifier in semi-supervised learning way, whereby the correctly and incorrectly labeled data are treated as labeled and unlabeled data respectively. The experimental results show that our method outperforms the state-of-the-art models.
Variational auto-encoders (VAEs) are widely used in natural language generation due to the regularization of the latent space. However, generating sentences from the continuous latent space does not explicitly model the syntactic information. In this paper, we propose to generate sentences from disentangled syntactic and semantic spaces. Our proposed method explicitly models syntactic information in the VAE’s latent space by using the linearized tree sequence, leading to better performance of language generation. Additionally, the advantage of sampling in the disentangled syntactic and semantic latent spaces enables us to perform novel applications, such as the unsupervised paraphrase generation and syntax transfer generation. Experimental results show that our proposed model achieves similar or better performance in various tasks, compared with state-of-the-art related work.
Relation detection is a core step in many natural language process applications including knowledge base question answering. Previous efforts show that single-fact questions could be answered with high accuracy. However, one critical problem is that current approaches only get high accuracy for questions whose relations have been seen in the training data. But for unseen relations, the performance will drop rapidly. The main reason for this problem is that the representations for unseen relations are missing. In this paper, we propose a simple mapping method, named representation adapter, to learn the representation mapping for both seen and unseen relations based on previously learned relation embedding. We employ the adversarial objective and the reconstruction objective to improve the mapping performance. We re-organize the popular SimpleQuestion dataset to reveal and evaluate the problem of detecting unseen relations. Experiments show that our method can greatly improve the performance of unseen relations while the performance for those seen part is kept comparable to the state-of-the-art.
Previous studies have shown that neural machine translation (NMT) models can benefit from explicitly modeling translated () and untranslated () source contents as recurrent states (CITATION). However, this less interpretable recurrent process hinders its power to model the dynamic updating of and contents during decoding. In this paper, we propose to model the dynamic principles by explicitly separating source words into groups of translated and untranslated contents through parts-to-wholes assignment. The assignment is learned through a novel variant of routing-by-agreement mechanism (CITATION), namely Guided Dynamic Routing, where the translating status at each decoding step guides the routing process to assign each source word to its associated group (i.e., translated or untranslated content) represented by a capsule, enabling translation to be made from holistic context. Experiments show that our approach achieves substantial improvements over both Rnmt and Transformer by producing more adequate translations. Extensive analysis demonstrates that our method is highly interpretable, which is able to recognize the translated and untranslated contents as expected.
In sequence labeling, previous domain adaptation methods focus on the adaptation from the source domain to the entire target domain without considering the diversity of individual target domain samples, which may lead to negative transfer results for certain samples. Besides, an important characteristic of sequence labeling tasks is that different elements within a given sample may also have diverse domain relevance, which requires further consideration. To take the multi-level domain relevance discrepancy into account, in this paper, we propose a fine-grained knowledge fusion model with the domain relevance modeling scheme to control the balance between learning from the target domain data and learning from the source domain model. Experiments on three sequence labeling tasks show that our fine-grained knowledge fusion model outperforms strong baselines and other state-of-the-art sequence labeling domain adaptation methods.
Existing neural machine translation systems do not explicitly model what has been translated and what has not during the decoding phase. To address this problem, we propose a novel mechanism that separates the source information into two parts: translated Past contents and untranslated Future contents, which are modeled by two additional recurrent layers. The Past and Future contents are fed to both the attention model and the decoder states, which provides Neural Machine Translation (NMT) systems with the knowledge of translated and untranslated contents. Experimental results show that the proposed approach significantly improves the performance in Chinese-English, German-English, and English-German translation tasks. Specifically, the proposed model outperforms the conventional coverage model in terms of both the translation quality and the alignment error rate.
Bilingual lexicon extraction has been studied for decades and most previous methods have relied on parallel corpora or bilingual dictionaries. Recent studies have shown that it is possible to build a bilingual dictionary by aligning monolingual word embedding spaces in an unsupervised way. With the recent advances in generative models, we propose a novel approach which builds cross-lingual dictionaries via latent variable models and adversarial training with no parallel corpora. To demonstrate the effectiveness of our approach, we evaluate our approach on several language pairs and the experimental results show that our model could achieve competitive and even superior performance compared with several state-of-the-art models.
Natural language sentences, being hierarchical, can be represented at different levels of granularity, like words, subwords, or characters. But most neural machine translation systems require the sentence to be represented as a sequence at a single level of granularity. It can be difficult to determine which granularity is better for a particular translation task. In this paper, we improve the model by incorporating multiple levels of granularity. Specifically, we propose (1) an encoder with character attention which augments the (sub)word-level representation with character-level information; (2) a decoder with multiple attentions that enable the representations from different levels of granularity to control the translation cooperatively. Experiments on three translation tasks demonstrate that our proposed models outperform the standard word-based model, the subword-based model, and a strong character-based model.
Most neural machine translation (NMT) models are based on the sequential encoder-decoder framework, which makes no use of syntactic information. In this paper, we improve this model by explicitly incorporating source-side syntactic trees. More specifically, we propose (1) a bidirectional tree encoder which learns both sequential and tree structured representations; (2) a tree-coverage model that lets the attention depend on the source-side syntax. Experiments on Chinese-English translation demonstrate that our proposed models outperform the sequential attentional model as well as a stronger baseline with a bottom-up tree encoder and word coverage.
In typical neural machine translation (NMT), the decoder generates a sentence word by word, packing all linguistic granularities in the same time-scale of RNN. In this paper, we propose a new type of decoder for NMT, which splits the decode state into two parts and updates them in two different time-scales. Specifically, we first predict a chunk time-scale state for phrasal modeling, on top of which multiple word time-scale states are generated. In this way, the target sentence is translated hierarchically from chunks to words, with information in different granularities being leveraged. Experiments show that our proposed model significantly improves the translation performance over the state-of-the-art NMT model.
In the encoder-decoder architecture for neural machine translation (NMT), the hidden states of the recurrent structures in the encoder and decoder carry the crucial information about the sentence. These vectors are generated by parameters which are updated by back-propagation of translation errors through time.We argue that propagating errors through the end-to-end recurrent structures are not a direct way of control the hidden vectors. In this paper, we propose to use word predictions as a mechanism for direct supervision. More specifically, we require these vectors to be able to predict the vocabulary in target sentence. Our simple mechanism ensures better representations in the encoder and decoder without using any extra data or annotation. It is also helpful in reducing the target side vocabulary and improving the decoding efficiency. Experiments on Chinese-English machine translation task show an average BLEU improvement by 4.53, respectively.
Neural parsers have benefited from automatically labeled data via dependency-context word embeddings. We investigate training character embeddings on a word-based context in a similar way, showing that the simple method improves state-of-the-art neural word segmentation models significantly, beating tri-training baselines for leveraging auto-segmented data.
Pairwise ranking methods are the most widely used discriminative training approaches for structure prediction problems in natural language processing (NLP). Decomposing the problem of ranking hypotheses into pairwise comparisons enables simple and efficient solutions. However, neglecting the global ordering of the hypothesis list may hinder learning. We propose a listwise learning framework for structure prediction problems such as machine translation. Our framework directly models the entire translation list’s ordering to learn parameters which may better fit the given listwise samples. Furthermore, we propose top-rank enhanced loss functions, which are more sensitive to ranking errors at higher positions. Experiments on a large-scale Chinese-English translation task show that both our listwise learning framework and top-rank enhanced listwise losses lead to significant improvements in translation quality.
Greedy transition-based parsers are appealing for their very fast speed, with reasonably high accuracies. In this paper, we build a fast shift-reduce neural constituent parser by using a neural network to make local decisions. One challenge to the parsing speed is the large hidden and output layer sizes caused by the number of constituent labels and branching options. We speed up the parser by using a hierarchical output layer, inspired by the hierarchical log-bilinear neural language model. In standard WSJ experiments, the neural parser achieves an almost 2.4 time speed up (320 sen/sec) compared to a non-hierarchical baseline without significant accuracy loss (89.06 vs 89.13 F-score).